首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用不同的挤压温度对新型镁合金Mg-8Al-1.2Ti-0.3Zr试样进行了挤压试验,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随挤压温度的升高,试样的磨损体积先减小再增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升再下降。与300℃挤压温度相比,375℃挤压温度下试样的磨损体积减小了31.47%;腐蚀电位正移了57 mV。建筑模板用Mg-8Al-1.2Ti-0.3Zr镁合金的挤压温度优选为375℃。  相似文献   

2.
对2A70-0.5Ce0.25Ti铝合金叶片试件进行了模锻,并进行了不同始锻温度下的耐磨损性能和耐腐蚀性能的测试和分析。结果表明:随始锻温度从440℃升高到490℃,试样的磨损体积先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与440℃始锻温度的试样性能相比,480℃始锻后试样的磨损体积减小48.48%,腐蚀电位则正移78 m V。2A70-0.5Ce0.25Ti铝合金模锻叶片试样的始锻温度优选为480℃。  相似文献   

3.
采用不同的熔炼温度和浇注温度对Q345A-V含钒建筑耐候钢试样进行了感应熔炼铸造成型试验,并进行了耐腐蚀性能和耐磨损性能的测试与分析。结果表明:随熔炼温度和浇注温度的升高,试样的腐蚀电位先正移后负移,磨损体积则先减小后增大,耐腐蚀性能和耐磨损性能的变化趋势均为先提升后下降。与1480℃熔炼温度相比,1520℃熔炼温度下试样的腐蚀电位正移了81 m V,磨损体积减小了31.82%;与1420℃浇注温度相比,1480℃熔炼温度下试样的腐蚀电位正移了114 m V,磨损体积减小了48.28%。优化后Q345A-V含钒建筑耐候钢试样的感应熔炼工艺参数为:熔炼温度1520℃和浇注温度1480℃。  相似文献   

4.
采用不同的浇注温度和保压比压对Al-10Si-3Cu-0.5V-0.2Ti铝合金机械外壳试样进行了压力铸造试验,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随浇注温度和保压比压的升高,试样的磨损体积先减小再增大,腐蚀电位先正移后负移,耐磨、耐腐蚀性能均表现为先提升再下降。在720℃浇注温度和60MPa保压比压下,试样的磨损体积最小,腐蚀电位最正。在这个条件下磨损体积为22×10~(-3)mm~3,腐蚀电位为0.846V。  相似文献   

5.
采用不同的热处理工艺对含铟水利机械钻杆材料试样进行了热处理,并进行了耐磨损性能和耐腐蚀性能的测试与分析。结果表明:在试验条件下,随淬火温度从800℃升高到880℃或回火温度从510℃升高到590℃,试样的耐磨损性能和耐腐蚀性能均先提高后下降。与800℃相比,860℃淬火试样的磨损体积减小40.7%,腐蚀电位正移192 m V。与510℃相比,570℃回火试样的磨损体积减小40%,腐蚀电位正移151 m V。试样的淬火温度优选为860℃,回火温度优选为570℃。  相似文献   

6.
《热加工工艺》2021,50(7):92-96
采用不同的浇注温度和比压对AZ31镁合金汽车轮毂进行了液态模锻成形,并进行了显微组织、耐磨损性能和耐腐蚀性能的测试与分析。结果表明:随比压和浇注温度的增加,轮毂试样的平均晶粒尺寸和磨损体积均先减小后增大,腐蚀电位先正移后负移,耐磨损性能和耐腐蚀性能先提升后下降。与30 MPa比压相比较,50 MPa比压时试样的平均晶粒尺寸和磨损体积分别减小了27.39%、41.67%,腐蚀电位正移了36 m V。与680℃浇注温度相比,700℃浇注时试样的平均晶粒尺寸和磨损体积分别减小了33.33%、47.5%,腐蚀电位正移了47 m V。AZ31镁合金汽车轮毂的液态模锻工艺参数优选为:50 MPa比压、700℃浇注温度。  相似文献   

7.
采用不同工艺对含锶新型建筑耐候钢09MnCuPTiSr进行了正火处理,并进行了试样耐腐蚀性能和耐磨损性能的测试与分析。结果表明:随正火温度从730℃提高到910℃(正火时间3 h),或随正火时间从1 h延长到5 h(正火温度870℃),耐候钢的耐腐蚀性能和耐磨损性能均先提高后下降。在正火时间3 h时,870℃正火的09MnCuPTiSr钢的腐蚀电位比730℃正移285 m V,磨损体积减小44%。在正火温度870℃时,3 h正火的09MnCuPTiSr钢的腐蚀电位比1 h的正移134 m V,磨损体积减小32%。正火温度优选为870℃,正火时间优选为3 h。  相似文献   

8.
采用不同的液态模锻工艺参数对汽车铝轮辋进行了成形,并进行了磨损和腐蚀性能的测试与分析。结果表明:比压为120 MPa时,与660℃浇注相比,720℃浇注试样的磨损体积减小了32%,腐蚀电位正移了116 m V。浇注温度为720℃时,与100 MPa成形的试样相比,120 MPa成形时试样的磨损体积减小了21%,腐蚀电位正移了92 m V。随浇注温度从660℃升高至740℃、比压从100 MPa升高至130 MPa,汽车铝轮辋的耐磨损性能和耐腐蚀性能均先提高后下降。适宜的浇注温度和比压分别为720℃和120 MPa。  相似文献   

9.
为了优化汽车空调支架用镁合金的挤压工艺,本文采用不同的工艺参数对试样进行了挤压。结果表明:随挤压温度从300℃增加至400℃、挤压速度从1 m/min增加至5 m/min,试样的强度先增大后减小,断后伸长率先减小后增大,腐蚀电位先正移后负移,试样的耐腐蚀性能先提高后下降。与300℃相比,360℃挤压使试样抗拉强度和屈服强度分别增大了22%、26%,断后伸长率减小了23%,腐蚀电位正移66 m V;与1 m/min相比,4 m/min挤压使试样抗拉强度和屈服强度分别增大了17%、20%,断后伸长率减小了15%,腐蚀电位正移51 m V。Mg-5Al-1Zn-0.3Ti镁合金的挤压温度和挤压速度参数分别优选为360℃和4 m/min。  相似文献   

10.
采用不同的浇注温度、压射速度和压射比压对汽车外壳零件用新型镁合金Mg-9Al-0.8Zn-0.5V-0.3In试样进行了铸造试验,并进行了耐腐蚀性能的测试与分析。结果表明:随浇注温度、压射速度和压射比压的增加,试样的腐蚀电位先正移后负移,耐腐蚀性能先提升再下降。与660℃浇注温度相比,700℃浇注温度下试样的腐蚀电位正移了34m V;与50 m/min压射速度相比,200 m/min下试样的腐蚀电位正移了28 m V;与80 MPa压射比压相比,120 MPa压射比压下试样的腐蚀电位正移了42 m V。汽车外壳用镁合金的压铸工艺参数优选为:700℃浇注温度、200 m/min压射速度、120 MPa压射比压。  相似文献   

11.
对AZ61Ce0.5镁合金机械外壳试样进行了常规锻造和多向锻造下的显微组织观察和耐腐蚀性能、耐磨损性能的测试与分析。结果表明:经多向锻造的镁合金机械外壳试样的晶粒得到细化,显微组织得到极大改善;腐蚀电位为-0.886 V,较常规锻造时正移了46 mV(-0.932→-0.886V);磨损25 min后磨损体积比常规锻造时减小27%(26×10~(-3)→19×10~(-3)mm~3),多向锻造试样的耐腐蚀性能和耐磨损性能均优于常规锻造。  相似文献   

12.
采用不同的始锻温度和终锻温度进行了F40-0.2Cr新型不锈钢的锻压试验,并进行了不锈钢法兰试样磨损性能和腐蚀性能的测试与分析。结果表明:在试验条件下,随始锻温度从975℃增大到1075℃或随终锻温度从800℃增大到900℃时,不锈钢试样的磨损性能和腐蚀性能均先升高后下降。不锈钢的始锻温度和终锻温度分别优选为1050、850℃。在其他条件相同的情况下,与975℃始锻相比,1050℃始锻时不锈钢试样的磨损体积减小45%,腐蚀电位正移151 m V;与800℃终锻试样相比,850℃终锻时不锈钢的磨损体积减小42%,腐蚀电位正移134 m V。  相似文献   

13.
采用不同工艺参数进行了Mg-Mn-Sn-Ce镁合金汽车散热器的挤压,并进行了力学性能和耐磨损性能的测试与分析。结果表明:随挤压温度、挤压速度、挤压比增加,散热器的抗拉强度先增大后减小,断后伸长率变化不大,磨损体积先减小后增大,耐磨损性能先提升后下降。Mg-Mn-Sn-Ce镁合金汽车散热器的优选挤压工艺参数为:挤压温度375℃、挤压速度3 m/min、挤压比18.8。  相似文献   

14.
在不同的浇注温度和压射比压下进行了ADC12-0.15V0.03In铝合金箱盖试样的压铸成形,并进行了耐磨损性能和耐腐蚀性能的测试、对比和分析。结果表明:随浇注温度的升高和压射比压的增大,箱盖试样的磨损体积和质量损失率均先迅速减小再缓慢增大,耐磨损性能和耐腐蚀性能先迅速提升后略有下降。在685℃浇注温度和95 MPa压射比压下,压铸试样的磨损体积和质量损失率最小,耐磨损性能和耐腐蚀性能最好。箱盖试样的压铸工艺参数优选为:685℃浇注温度和95 MPa压射比压。  相似文献   

15.
《热加工工艺》2021,50(7):103-107
采用不同的挤压温度、挤压速度和挤压比对新能源汽车电池托盘用Mg-4Al-0.5Sn-0.1Ti镁合金试样进行了挤压成型试验,并进行了冲击吸收能和腐蚀电位的测试与分析。结果表明:与300℃挤压温度相比,360℃挤压温度下试样的冲击吸收能增大了71.42%,腐蚀电位正移了33 m V;与1 m/min挤压速度相比,4 m/min挤压速度下的冲击吸收能增大了63.64%,腐蚀电位正移了79 m V;与12挤压比相比,18挤压比下的冲击吸收能增大了33.33%,腐蚀电位正移了55 m V。优化的新能源汽车电池托盘用Mg-4Al-0.5Sn-0.1Ti镁合金的挤压工艺参数为:挤压温度360℃、挤压速度4m/min、挤压比18。  相似文献   

16.
采用不同的挤压温度对Mg-8Al-0.6Zn-0.5Ti-0.3V新型镁合金机械外壳件进行挤压成形试验,并取样进行冲击性能和耐腐蚀性能测试。结果表明:随挤压温度升高,挤压件试样冲击吸收功先增大再减小,腐蚀电位先正移后逐渐负移,单位面积腐蚀失重先减小后增大,冲击性能和耐腐蚀性能先提升后下降。与300℃挤压温度相比,380℃挤压温度试样的冲击吸收功增大了58.97%,腐蚀电位正移了34 mV,单位面积的腐蚀失重减小了37.8%。Mg-8Al-0.6Zn-0.5Ti-0.3V新型镁合金机械外壳件的挤压温度优选为380℃。  相似文献   

17.
始锻温度是锻造镁合金的一个重要工艺参数。采用不同的始锻温度进行了MB5-Ce镁合金锻造,并进行了腐蚀性能和磨损性能的测试与分析。结果表明:随始锻温度从260℃增至340℃,合金的腐蚀电位先正移后负移,磨损体积先减小后增大;合金耐腐蚀性能和耐磨损性能先提升后下降。新型汽车镁合金的始锻温度优选为300℃。  相似文献   

18.
为了研究挤压工艺参数对Al-Mg-Si-Cu-Cr-Sr新型铝合金建筑型材性能的影响,采用不同的挤压温度、挤压速度和挤压比,进行了该新型铝合金型材的挤压成形,并进行了拉伸性能和耐腐蚀性能的测试与分析。结果表明:随挤压温度从430℃提高至550℃,挤压速度从1 m·min-1增大至5 m·min-1,挤压比从10增加至26,型材的抗拉强度先增大后减小,耐腐蚀性能先提升后下降。与430℃挤压相比,490℃挤压时型材的抗拉强度增大39 MPa、腐蚀电位正移0.127 V;与1 m·min-1挤压速度相比,3 m·min-1挤压时型材的抗拉强度增大27 MPa、腐蚀电位正移0.097 V;与挤压比26相比,挤压比18时型材的抗拉强度增大22 MPa、腐蚀电位正移0.109 V。Al-Mg-Si-Cu-Cr-Sr新型铝合金建筑型材的挤压工艺参数优选为:挤压温度490℃、挤压速度3 m·min-1和挤压比18。  相似文献   

19.
采用不同工艺进行Al-1Mg-0.6Si-0.5Cr-0.5V新型铝合金建筑模板的挤压试验,分析了挤压模板试样的力学性能和耐腐蚀性能。结果表明:随挤压温度从350℃提高到475℃、挤压速度从2 m/min加快到4.5 m/min,试样的力学性能和耐腐蚀性能都先提高后下降。当挤压速度恒定为3.5 m/min时,与350℃挤压相比,450℃挤压时试样的抗拉强度和屈服强度分别提高12.1%、12.2%,腐蚀质量损失率减小31.5%。当挤压温度保持450℃不变,与4.5m/min挤压的速度相比,3.5 m/min的挤压速度挤压时,试样的抗拉强度和屈服强度分别提高9.9%、10.0%,腐蚀质量损失率减小33.3%。模板试样的挤压温度和挤压速度分别优选为450℃、3.5 m/min。  相似文献   

20.
采用不同的始锻温度和终锻温度进行了25MnVCrTi钢新型机械联接环的成形,对其试样的耐磨损性能和耐腐蚀性能进行测试和比较分析。结果表明:随始锻温度从1140℃升高至1200℃,终锻温度从780℃升高至840℃,联接环的耐磨损性能和耐腐蚀性能均先提高后下降。1190℃始锻,830℃终锻时试样的磨损体积最小,腐蚀电位最正。机械联接环的最佳锻造工艺参数为:1190℃始锻温度、830℃终锻温度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号