首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用机械合金化(MA)与放电等离子烧结(SPS)相结合的方法制备出FeCoNiCu0.4Al0.4高熵合金,研究不同热处理温度对合金显微组织与力学性能的影响规律。结果表明:机械合金化后,FeCoNiCu0.4Al0.4高熵合金形成了单相的FCC固溶体,经1100℃SPS烧结后的块体组织仍为单相FCC结构,其压缩屈服强度、塑性应变和显微硬度分别为1165.1 MPa、45.2%和356.9 HV。经过热处理后,合金组织中生成了新的BCC相,且BCC相的含量随热处理温度的升高先增多后减少,500、600和700℃热处理后BCC相的含量分别为7%、30%和21%(体积分数)。退火态FeCoNiCu0.4Al0.4高熵合金的屈服强度随热处理温度的升高先升高后降低。当BCC相含量增多时,材料的屈服强度和硬度相应地提高,而塑性却显著降低。  相似文献   

2.
研究选区激光熔化增材制造FeMnCoCrNi体系高熵合金的微裂纹行为,并采用XRD技术对激光打印后样品表面的残余应力进行分析。结果表明,经激光打印后等原子比FeMnCoCrNi高熵合金显示为稳定的单相面心立方(FCC)结构,出现残余拉应力,并产生微裂纹。相比之下,具有低层错能的非等原子比亚稳FeMnCoCr高熵合金在各种激光能量密度下均出现残余压应力,且无微裂纹形成。在激光熔化后的冷却过程中,亚稳高熵合金中发生的从FCC基体相到密排六方(HCP)相的切变型相变消耗了激光打印过程中的热应力,从而抑制微裂纹的产生。此外,相比于单相稳定高熵合金,亚稳高熵合金在拉伸变形过程中马氏体相变也有助于提高其抗拉强度和延展性。这些结果为增材制造领域设计开发高强、高韧、无裂纹的合金提供有益参考。  相似文献   

3.
Fe0.4Cr0.4NiMnxCu (0 ≤ x ≤ 1.4) high entropy alloys (HEAs) were prepared by copper-mold casting. The phase selection, microstructure, tensile properties and fracture morphologies were investigated. The microstructure with dual FCC phases was formed in the as-cast HEAs with x ≤ 1, and BCC phase was crystallized from the central FCC dendrites of HEAs with x = 1.2 and 1.4. In homogenized Fe0.4Cr0.4NiMnCu HEA, needle-like shaped BCC phase was formed resulting in a slight enhancement of yield strength. Compositional heterogeneity was detected in both FCC and BCC dendrites. These HEAs exhibit excellent comprehensive tensile properties, e.g. the yield strength, ultimate strength and elongation of the HEA with x = 1 reaches 439 MPa, 884 MPa and 23.4%, respectively. High density of dislocations in FCC matrix was formed after tensile deformation. FCC type of fine polyhedra, which is mainly composed of Cr, Mn and O, is formed in dendrites. In this work, the phase selection and strengthening mechanism were evaluated based on atomic size factor. It was found that two criteria can be employed to predict the phase regions of current alloys. The solid solution strengthening for this HEA system is the most important among the four kinds of strengthening mechanisms.  相似文献   

4.
李星  王亚强  张金钰  吴凯  刘刚  孙军 《表面技术》2023,52(1):1-20, 46
高熵合金涂层由于具有优于块体高熵合金和传统金属涂层的综合性能,在航空航天、核反应堆等极端服役环境下表现出了巨大的应用潜力。涂层低维形态产生的尺寸效应与高熵合金独特的多主元特征效应相耦合,使高熵合金涂层具有成分均匀、组织致密、结构稳定、性能优异等特点。概述了近年来高熵合金涂层的主要制备技术,简述了不同制备方法的原理、优势及工艺参数对涂层组织性能的影响。探讨了高熵合金中主要组元元素的作用、相结构的调控准则、多相转变行为等微观组织结构的特征与影响机制。论述了高熵合金涂层的服役性能特点,包括力学性能、抗氧化、耐腐蚀、抗辐照及耐磨损性能,并分析了成分/工艺-组织-性能的关联及相关作用机理。最后,总结了目前研究工作中存在的关键科学难题与挑战,对高熵合金涂层的研究方向与应用前景进行了展望。  相似文献   

5.
The effects of vanadium addition on the microstructural evolution and mechanical properties of AlCrFe2Ni2 high-entropy alloy (HEA) were investigated. The results showed that the AlCrFe2Ni2V0.2 HEA was composed of FCC phase, disordered BCC phase, and ordered BCC (B2) phase. With the increase in vanadium content, the formation of FCC phase was inhibited, and a transition from FCC phase to BCC phase occurred. The FCC phase disappeared completely when the value of x exceeds 0.4 in AlCrFe2Ni2Vx HEAs. Besides, the amplitude-modulated microstructure morphology transformed from a B2 phase matrix with dispersed BCC nano-phase into an alternating interconnected B2 and BCC phases. Vanadium element has the function of stabilizing BCC phase and B2 phase in AlCrFe2Ni2Vx alloys. The hardness of AlCrFe2Ni2Vx alloys increased from HV 332.4 to HV 590.7, while the yield strength increased from 765 to 1744.6 MPa with increasing vanadium content, which was mainly due to the decreasing content of FCC phase and the solid solution strengthening of vanadium element. At the same time, the compression ratio of the alloys decreased with the disappearance of the FCC phase. Among the alloys, the AlCrFe2Ni2V0.2 alloy possessed the most excellent comprehensive mechanical properties with yield strength, fracture strength, and compressive ratio 1231.1, 2861.9 MPa, and 44.5%, respectively.  相似文献   

6.
董方  毛宁  瞿伟 《金属热处理》2021,46(3):116-120
研究了La的添加对FeMnCrNiCo高熵合金(HEAs)铸态组织及硬度的影响,借助XRD、OM、EDS和维氏硬度计分别对FeMnCrNiCo和FeMnCrNiCoLa0.2高熵合金的微观组织及硬度进行了对比分析。研究表明:添加La后,合金的枝晶细化了49.1%,同时由fcc单相固溶体结构变为fcc相和LaNi相的两相结构,LaNi相呈连续大面积分布于枝晶间;添加La后,枝晶间脆硬的LaNi相以及组织的细化使合金的硬度提高了37%。  相似文献   

7.
An equiatomic CoCrFeNiMn high-entropy alloy was synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). During MA, a solid solution with refined microstructure of 10 nm which consists of a FCC phase and a BCC phase was formed. After SPS consolidation, only one FCC phase can be detected in the HEA bulks. The as-sintered bulks exhibit high compressive strength of 1987 MPa. An interesting magnetic transition associated with the structure coarsening and phase transformation was observed during SPS process.  相似文献   

8.
In order to evaluate interstitial strengthening effect on the properties of high entropy alloy (HEA), a nitrogen-doped CrMnFeVTi6 HEA was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). XRD, SEM, TEM and FIB were used to characterize the phase composition and microstructure of this material. The sintered bulk HEA exhibits a microstructure comprising TiNx, BCC, Laves and B2 phases. The HEA exhibits high yield strength (>2729 MPa) and hardness in lower temperature range of <380 °C. Quantitative calculations of the contributions from each strengthening mechanism in the BCC phase indicate that the interstitial strengthening by nitrogen is the dominant mechanism. Nitrogen additions in the BCC phase can produce a yield strength increase of ∼634 MPa/at.%, which is much higher than the strengthening effects of carbon or boron additions in other alloys. This demonstrates that adding nitrogen is a viable approach for enhancing the strength of HEAs.  相似文献   

9.
10.
Mechanical properties of high-entropy alloys (HEAs) with the face-centered cubic (fcc) structure strongly depend on their initial grain orientations.However,the orientation-dependent mechanical responses and the underlying plastic flow mecha-nisms of such alloys are not yet well understood.Here,deformation of the equiatomic FeMnCoCrNi HEA with various initial orientations under uniaxial tensile testing has been studied by using atomistic simulations,showing the results consistent with the recent experiments on fcc HEAs.The quantitative analysis of the activated deformation modes shows that the ini-tiation of stacking faults is the main plastic deformation mechanism for the crystals initially oriented with[001],[111],and[112],and the total dislocation densities in these crystals are higher than that with the[110]and[123]orientations.Stacking faults,twinning,and hcp-martensitic transformation jointly promote the plastic deformation of the[110]orientation,and twinning in this crystal is more significant than that with other orientations.Deformation in the crystal oriented with[123]is dominated by the hcp-martensite transformation.Comparison of the mechanical behaviors in the FeMnCoCrNi alloy and the conventional materials,i.e.Cu and Fe50Ni50,has shown that dislocation slip tends to be activated more readily in the HEA.This is attributed to the larger lattice distortion in the HEA than the low-entropy materials,leading to the lower criti-cal stress for dislocation nucleation and elastic-plastic transition in the former.In addition,the FeMnCoCrNi HEA with the larger lattice distortion leads to an enhanced capacity of storing dislocations.However,for the[001]-oriented HEA in which dislocation slip and stacking fault are the dominant deformation mechanisms,the limited deformation modes activated are insufficient to improve the work hardening ability of the material.  相似文献   

11.
Effects of Mn content on mechanical properties of FeCoCrNiMn_x(0 ≤x≤0.3) high-entropy alloys(HEAs) are investigated via first-prmciples calculations combining EMTO-CPA method.Related physical parameters,including lattice constant.elastic constants,elastic modulus,Pugh's ratio,anisotropy factors,Poisson's ratio,Cauchy pressure,Vickers hardness,yield strength,and energy factor,are calculated as a function of Mn content.The results show that the resistances to bulk,elastic,and shear deformation decrease with increasing Mn content.Pugh's ratio B/G indicates that the ductility of FeCoCrNiMn_x HEAs has a remarkable reduction between 22 and 24% of Mn content.Meanwhile,Cauchy pressure suggests that the atomic bonding transforms from metallic to directional characteristic from 22 to 24% of Mn content.Vickers hardness and yield strength of FeCoCrNiMn HEA are intrinsically larger than those of FeCoCrNi HEA.Dislocation nucleation easily occurs in FeCoCrNiMn HE A compared to FeCoCrNi HEA,and large dislocation width in FeCoCrNiMnO_2 HE A results in low stacking-fault energy,which easily induces twinning deformation.This work provides a valuable msieht for further theoretical and experimental study on the mechanical properties of FeCoCrNiMn_x(0≤x≤0.3) HEAs.  相似文献   

12.
采用第一性原理密度泛函理论,结合平面波赝势和广义梯度近似(GGA),用虚拟晶体近似(VCA)的方法建立晶体结构模型,计算了高熵合金Al Co Cr Cu Fe Ni在不同压力影响下的结构性能,弹性能及压力作用下的结构相变。计算结果表明,随着压力的增大,高熵合金Al Co Cr Cu Fe Ni的晶格常数减小而密度增大。高熵合金Al Co Cr Cu Fe Ni只在fcc结构下才符合力学稳定性条件,而在bcc结构下不符合,体积模量随压力的增大而增大。高熵合金Al Co Cr Cu Fe Ni大约在21 820 GPa压力下会由fcc结构转变为bcc结构。  相似文献   

13.
An equiatomic FeCoCrNi high alloy (HEA) with both high tensile strength and ductility was produced by a powder metallurgy (P/M) method. The P/M process includes a gas atomization and a hot extrusion of pre-alloyed HEA powder. Microstructures and mechanical properties were characterized using optical microscopy (OP), scanning electron microscopy (SEM), electron backscattered diffraction (EBSD), and tensile tests. The results show that the P/M FeCoCrNi HEA has a single face centered cubic (fcc) structure and an equiaxed microstructure. No obvious porosity and brittle intermetallic phase was found. The as-extruded alloy exhibits a very high tensile strength of 712.5 MPa, and still maintains an elongation as high as 56%. The improvement of the tensile properties is caused by the solid solution strengthening, grain boundary strengthening and homogenous microstructure. Therefore, the powder hot extrusion can be considered as a promising way for preparing large-sized HEAs with high mechanical properties.  相似文献   

14.
A multi-component nanocrystalline AlCrCuFeNiZn high entropy alloy with 12 nm crystallite size was successfully synthesized using high energy ball milling. The progress of solid solution formation during milling was analyzed using XRD. A major portion of the HEA is observed to be BCC in crystal structure after 30 h of milling. Thermal analysis showed that HEA powders exhibited exponential oxidation characteristics. Thermal analysis showed that low activation energy was sufficient to start recrystallization because of high energy stored in the milled powders. The crystallite size after consolidation is in nanocrystalline range due to the sluggish diffusion of atoms and nanotwinning. After consolidation, the crystallite size is around 79 nm. Samples sintered at 850 °C for 2 h exhibited high hardness values of 700 ± 15 HV1.0, major volume fraction of the phases are having FCC crystal structure along with a minor phase having BCC crystal structure. Due to positive enthalpy mixing of Cu with other elements, decomposition of BCC to new FCC phases occurs.  相似文献   

15.
The equiatomic refractory high entropy alloy (HEA) TiZrNbMoTa was investigated. The alloyed powders with face-centered cubic (FCC) structured solid solution phase were prepared by mechanical alloying (MA) and then sintered by spark plasma sintering (SPS) at 1300, 1400, 1500, and 1600 °C. The microstructure and mechanical properties of the bulk alloy were investigated. The body-centered cubic (BCC) structured solid solution phase and the ZrO2 phase precipitated from the FCC structured solid solution phase during cool-down from sintering. The highest compression fracture strength (3759 MPa) and fracture strain (12.1%) were obtained in the refractory HEA sintered at 1400 °C. The grain boundary strengthening, precipitation strengthening, solid solution strengthening, transformation-induced plastic (TRIP) effect, and toughening effect of the ZrO2 phase are the important factors for the high strength and ducitily of the refractory HEA prepared in this study.  相似文献   

16.
用粉末冶金法制备FiNiCrCoSix和FiNiCrCoTix高熵合金(HEAs)。其中x为0、0.3%、0.6%和0.9%(质量分数)。所有合金中均形成均匀分布的固溶体。与FiNiCrCo高熵合金相比,加入Si和Ti后,合金的密度和硬度提高,研究合金在不同载荷下的磨损率。结果表明,含0.3%Si和0.9%Ti的高熵合金磨损率最低。用XRD、SEM和EDX研究HEAs的相组或、晶粒尺寸和显微组织。通过H2SO4、HNO3和HCl溶液浸泡实验,研究Si和Ti含量对烧结态FiNiCrCoSix和FiNiCrCoTix HEAs腐蚀行为和表面形貌的影响。在样品表面观察到不同尺寸的均匀腐蚀和局部点烛,且FiNiCrCoSi0.3合金具有更小,更少的蚀坑,和优异的显微组织  相似文献   

17.
In this review paper, the research progress on corrosion behavior of hexagonal close-packed(HCP) singular phase, body cubic-centered(BCC) singular phase and(HCP + BCC) duplex-structured Mg–Li alloys has been summarized and reviewed, and the future trend about the studies on corrosion behavior of Mg–Li-based alloys and possible solving methods for the improvement in corrosion resistance are discussed also.  相似文献   

18.
In this paper we report a thermodynamic database which was developed by using the CALPHAD approach. The TCHEA1 database includes 15 chemical elements (Al, Co, Cr, Cu, Fe, Hf, Mn, Mo, Nb, Ni, Ta, Ti, V, W and Zr). It is suitable for the study of Bcc and Fcc HEA systems. The database is constructed based on the thermodynamic assessment of all binary systems and many key ternary systems where almost all possible metastable and stable phases are considered. It is extensively demonstrated in the present work that TCHEA1 gives satisfactory prediction on the phase equilibria in various HEA systems (quaternary to ennead) and wide temperature ranges (liquidus to subsolidus). Thermodynamic stability calculations of simple solid solutions (Bcc and Fcc) and intermetallics (sigma, Laves, μ-phase etc.) are validated against the available experimental information in as-cast or as-annealed state. Such CALPHAD database focusing on the modelling of Gibbs energy rather than entropy makes reliable predictions of thermodynamic equilibrium and phase transformation, no matter whether the alloy/system has high entropy or not. Cases with miscibility gap in liquid and solid solutions and second-order phase transition at low temperatures are demonstrated. With the volume data included, TCHEA1 is capable to predict the density and thermal expansion coefficient of HEAs as well. This thermodynamic database is also applicable in process simulations when used together with compatible kinetic databases.  相似文献   

19.
In the present study,we investigate the crystal structure of high-entropy alloys (HEAs) in the form of CoFe2NiMn0.3AlCux(x =0.25,0.50,0.75,and 1.00) and their mechanical and magnetic properties.The CoFe2NiMn0.3AlCux alloys are composed of a mixture of a body-centered cubic (BCC) and a face-centered cubic (FCC) solid solution.The increased amounts of cop-per (Cu) boost both alloy strength and plastic ductility.The CoFe2NiMn0.3AlCu1.0 HEAs demonstrate excellent mechanical properties,such as a high strength of 1832 MPa and a large plastic ductility of 22.38%.Magnetic property measurements on this alloy system indicated high saturated magnetization and high coercivity.The coercivity of the tested alloys lies in the range between 40 and 182 Oe,suggesting that the alloys have semi-hard magnetic properties.This study suggests that the present CoFe2NiMn0.3AlCux HEAs could serve as potential candidates for soft magnets in electromagnetic applications.  相似文献   

20.
The phase transition of tungsten (W) under high pressures was investigated with molecular dynamics simulation. The structure was characterized in terms of the pair distribution function and the largest standard cluster analysis (LSCA). It is found that under 40−100 GPa at a cooling rate of 0.1 K/ps a pure W melt first crystallizes into the body-centred cubic (BCC) crystal, and then transfers into the hexagonal close-packed (HCP) crystal through a series of BCC−HCP coexisting states. The dynamic factors may induce intermediate stages during the liquid−solid transition and the criss-cross grain boundaries cause lots of indistinguishable intermediate states, making the first-order BCC−HCP transition appear to be continuous. Furthermore, LSCA is shown to be a parameter-free method that can effectively analyze both ordered and disordered structures. Therefore, LSCA can detect more details about the evolution of the structure in such structure transition processes with rich intermediate structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号