首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 51 毫秒
1.
以酸变性木薯淀粉为原料,采用水包水乳液法在不同温育温度下制备了凝沉型和交联型淀粉微球,并对微球的产率和理化特性进行比较研究。随着温育温度的提高,凝沉型淀粉微球的产率降低,但交联型淀粉微球的产率提高。温育温度为6℃时,凝沉型淀粉微球产率最高,达到79.8%。交联型淀粉微球的溶胀率和亚甲基蓝吸附量明显大于凝沉型淀粉微球。扫描电镜照片显示,凝沉型和交联型淀粉微球基本均为球形,但凝沉型淀粉微球表面较粗糙且有多个小凹坑,而交联型淀粉微球表面较致密。X射线衍射图谱显示凝沉型淀粉微球为部分结晶结构,而交联型淀粉微球为无定形结构。热重分析结果表明,凝沉型淀粉微球的热稳定性明显高于交联型淀粉微球。  相似文献   

2.
以可溶性淀粉为原料,N,N′-亚甲基双丙烯酰胺为交联剂,采用反相悬浮聚合制备了交联淀粉微球。用原子吸收分光光度计测吸附后的Pb2+质量浓度,计算得到吸附量。研究交联淀粉微球对Pb2+的吸附行为,得出吸附量与吸附时间、酸碱度、吸附剂用量、初始溶液质量浓度之间的关系。结果表明,同样条件下,交联淀粉对Pb2+的吸附性能优于未交联淀粉,交联淀粉微球对Pb2+吸附行为同时符合Langmiur和Freundlich吸附等温方程,也符合一级动力学模型和二级动力学模型。  相似文献   

3.
以可溶性淀粉为原料,煤油为油相,环氧氯丙烷( EPI)为交联剂,司盘-80( Span80)为乳化剂,采用反相乳液聚合法制备交联淀粉微球,探讨了不同工艺参数对成球效果和微球粒径的影响.利用扫描电镜对产物进行形貌表征,观测到淀粉微球形态圆整,平均粒径大约为20μm;利用红外光谱仪对其进行结构分析,证明可溶性淀粉与环氧氯丙烷发生了交联反应;利用X射线衍射仪(XRD)对其表征并与淀粉XRD的图谱比较分析,表明淀粉微球晶型发生了变化,结晶度降低.  相似文献   

4.
反相微乳法合成淀粉微球的研究   总被引:8,自引:0,他引:8  
以可溶性淀粉为原料,环氧氯丙烷为交联剂,Span60为乳化剂,植物油为油相,采用反相微乳法合成淀粉微球.以吸附量为指标进行正交试验,得到淀粉微球的最佳合成条件为:淀粉浓度14%、油相用量100 mL、乳化剂用量0.75 g、交联剂用量4.8 mL、搅拌速度1 200 r/min.利用红外光谱和电子显微镜对产物进行表征,证明了可溶性淀粉与环氧氯丙烷发生了交联反应.  相似文献   

5.
以可溶性淀粉为原料,环氧氯丙烷为交联剂,Span60为乳化剂,植物油为油相,采用反相微乳法合成淀粉微球。以吸附量为指标进行正交试验,得到淀粉微球的最佳合成条件为:淀粉浓度14%、油相用量100 mL、乳化剂用量0.75 g、交联剂用量4.8 mL、搅拌速度1200 r/min。利用红外光谱和电子显微镜对产物进行表征,证明了可溶性淀粉与环氧氯丙烷发生了交联反应。  相似文献   

6.
以可溶性淀粉为原料,环己烷和水构成反相悬浮体系,Span60和Tween60为复配乳化剂,N,N′-亚甲基双丙烯酰胺(MBAA)为交联剂,采用反相悬浮聚合法合成出淀粉微球.采用人工肠液对所得淀粉微球进行了体外降解,运用红外光谱、扫描电镜、粒度分析仪对所合成的淀粉微球及其降解产物进行了表征分析.实验结果表明,淀粉微球在消化液中的降解有一定规律,从时间上推理,其能够在结肠部位准确释药.因此,淀粉微球有望成为口服结肠定位给药系统(OCDDS)的理想药物载体.  相似文献   

7.
采用反相悬浮交联的方法,以可溶性淀粉为原料,同时以三偏磷酸钠作为交联剂,Span80作为乳化剂,聚乙二醇6000作为致孔剂,大豆油为油相制备食用级吸附淀粉微球,研究了pH、反应温度、交联剂用量、反应时间和致孔剂用量等对淀粉微球制备的影响。在pH为10、反应温度50℃、交联剂用量0.8%、反应时间5h、致孔剂用量0.08g/g淀粉条件下,得到的多孔性淀粉颗粒的吸附性能最好,对亚甲基蓝吸附量为1.761mg/g淀粉颗粒。通过扫描电镜、N2吸附-脱附对产物结构进行表征,证明淀粉微球具有多孔结构,比表面积为1 699m2/g。  相似文献   

8.
新型阳离子淀粉的研究   总被引:8,自引:0,他引:8  
对两类新型阳离子淀粉--阳离子羟乙基淀粉和阳离子苄基淀粉的合成方法进行了研究,通过元素分析和红外光谱对其进行了初步表征,元素分析表明,所得产物取代度小于0.2;红外光谱分析表明在阳离子淀粉中引入了羟乙基和苄基,与预基结构相符,此外,对两类新型阳离了淀粉的某些使用性能如絮凝性、破乳性进行了初步探讨,并与普通阳离子淀粉进行了比较,试验表明,阳离子羟乙基淀粉具有较好的絮凝性能;阳离子羟乙基淀粉、阳离子苄  相似文献   

9.
修饰碳糊电极研究载药淀粉微球的吸附机理   总被引:5,自引:0,他引:5  
在反相乳液体系中合成了载药淀粉微球,分析了微球的结构特征。分别制备了碳糊电极和淀粉微球修饰碳糊电极,选择具有多个羟基和烯醇结构的抗坏血酸为模型药物。以pH=6.4的磷酸盐缓冲液为底液,支持电解质KCl浓度为0.1 mol.L-1。逐次降低抗坏血酸的浓度,测定不同电极的检测下限。选用1.0×10-4mol.L-1的抗坏血酸溶液,在-0.4 V~0.9 V的电位范围内以50 mV.s-1的速度扫描,记录A~V图。通过比较不同工作电极作用下抗坏血酸的氧化特征,可以推论淀粉微球对抗坏血酸的富集作用更多的依赖于微球结构中的-OH、-NH2与抗坏血酸分子中-OH之间的氢键缔合作用。  相似文献   

10.
制备了取代度为0.04的阳离子玉米淀粉,然后用不同量的三氯氧磷交联。试验表明交联对淀粉阳离子化的反应速率没有影响,交联会减小阳离子淀粉的膨胀率和溶解度。电子显微镜扫描显示交联会阻碍直链淀粉从阳离子玉米淀粉表面的渗出。微分扫描差热仪的数据表明,交联的阳离子玉米淀粉有较高的峰转换温度,糊化热较低,这是由于交联减少了直链淀粉的缘故。在粘焙力测量仪上交联阳离子玉米淀粉有较高的粘度和粘度稳定性,这将更适合于工业应用,并有可能减少阳离子淀粉的用量。  相似文献   

11.
采用乳化复合技术制备出粒径为50~370nm,粒径分布均匀,分散系数为0.2738,具有磁核的淀粉复合微球。该微球呈球形,其表面富含羧基和羟基,在水介质中形成均匀稳定的分散液,在磁场强度为0.05Wb/m2的弱磁场中具有强磁响应性。制备磁性微球的最佳制备条件为:淀粉用量为124.95mg/mL,氯化亚铁用量为53.00mg/mL,pH值大于9.73。  相似文献   

12.
磁性淀粉复合微球的制备及其性质   总被引:13,自引:2,他引:13  
采用乳化复合技术制备出粒径为50~370nm,粒径分布均匀,分散系数为0.2738,具有磁核的淀粉复合微球。该微球呈球形,其表面富含羧基和羟基,在水介质中形成均匀稳定的分散液,在磁场强度为0.05Wb/m^2的弱磁场中具有强磁响应性。制备磁性微球的最佳制备条件为:淀粉用量为124.95mg/mL,氯化亚铁用量为53.00mg/mL,pH值大于9.73。  相似文献   

13.
纳米微球以可溶性淀粉和β-环糊精为原料,选用正己烷为油相,Span60和Tween60为乳化剂,正戊醇为助乳化剂,三偏磷酸钠为交联剂,以对亚甲基蓝的去除率为指标进行了单因素和正交试验。结果表明,质量分数为2%的可溶性淀粉与β-环糊精溶液为水相(二者的质量比为1∶2),油相用量为110 mL,水相用量为15 mL,乳化剂Span60用量为3.3 g,Tween60用量为6.6 g,助乳化剂用量为18 mL,三偏磷酸钠用量为0.07 g,制备得到的复合纳米微球在扫描电子显微镜下,微球大小分布均匀,所得纳米微球产率为41%,平均粒径为329.3 nm。  相似文献   

14.
羧甲基玉米淀粉合成工艺的改进   总被引:10,自引:0,他引:10  
以玉米淀粉为原料,采用改进的合成方法,即对反应物料进行碱前处理,并加入促进剂,制备了羧甲基玉米淀粉钠。以取代度为目标,研究了氢氧化钠、反应时间、反应温度等因素对反应的影响,以及取代度与产品物性的关系,确定了优化的工艺参数为:氢氧化钠:一氯乙酸=2:1(摩尔比),反应温度60℃,反应时间120min,淀粉15g,促进剂22g。  相似文献   

15.
采用分散聚合法制备的聚苯乙烯(PS)阳离子微球为模板,以正硅酸乙酯(TEOS)为前驱体,经溶胶-凝胶反应和静电吸附作用,形成结构稳定的PS/SiO2核壳复合微球,并采用SEM、TEM和Zeta电位仪对制备过程中的主要影响因素进行了研究.结果表明,氨水用量增加可以加速包覆过程,并使表面包覆层粗糙;PS表面电荷密度越大,SiO2在PS微球表面吸附效果越好;复合微球壳层厚度则会随着TEOS用量增加而增加.  相似文献   

16.
乳液聚合法制备聚苯乙烯微球   总被引:1,自引:0,他引:1  
采用乳液聚合法制备了聚苯乙烯(PS)微球,对制备条件进行了研究。电镜分析表明,PS微球平均粒径约为35nm,且随乳化剂浓度的增加而减小。PS微球易溶于非极性或弱极性溶剂,而不溶于极性溶剂中。XRD分析表明,PS微球为非晶结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号