首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monolithic capillary columns were prepared by copolymerization of styrene and divinylbenzene inside a 200-microm i.d. fused silica capillary using a mixture of tetrahydrofuran and decanol as porogen. With gradients of acetonitrile in 100 mM triethylammonium acetate, the synthesized columns allowed the rapid and highly efficient separation of single-stranded oligodeoxynucleotides and double-stranded DNA fragments by ion-pair reversed-phase high-performance liquid chromatography (IP-RP-HPLC). Compared with capillary columns packed with micropellicular, octadecylated poly-(styrene/divinylbenzene) particles, an improvement in column performance of approximately 40% was obtained, enabling the analysis of an 18-mer oligodeoxynucleotide with a column efficiency of more than 190000 plates per meter. The chromatographic separation system was on-line-coupled to electrospray ionization mass spectrometry (ESI-MS). To improve the mass spectrometric detectabilities, 25 mM triethylammonium bicarbonate was utilized as an ion-pair reagent at the cost of only little reduction in separation performance and acetonitrile was added postcolumn as the sheath liquid through the triaxial electrospray probe. High-quality mass spectra of femtomole amounts of 3-mer to 80-mer oligodeoxynucleotides were recorded showing very little cation adduction. Double-stranded DNA fragments ranging in size from 51 to 587 base pairs were separated and detected by IP-RP-HPLC-ESI-MS. Accurate mass determination by deconvolution of the mass spectra was feasible for DNA fragments up to the 267-mer with a molecular mass of 165 019, whereas the spectra of longer fragments were too complex for deconvolution because of incomplete separation due to overloading of the column. Finally, on-line IP-RP-HPLC tandem MS was applied to the sequencing of short oligodeoxynucleotides.  相似文献   

2.
The use of tetrahydrofuran/decanol as porogens for the fabrication of micropellicular poly(styrene/divinylbenzene) monoliths enabled the rapid and highly efficient separation of peptides and proteins by reversed-phase high-performance liquid chromatography (RP-HPLC). In contrast to conventional, granular, porous stationary phases, in which the loading capacity is a function of molecular mass, the loadability of the monoliths both for small peptides and large proteins was within the 0.40.9-pmol range for a 60- x 0.2-mm capillary column. Lower limits of detection obtained by measuring UV-absorbance at 214 nm with a 3-nl capillary detection cell were 500 amol for an octapeptide and 200 amol for ribonuclease A. Upon reduction of the concentration of trifluoroacetic acid in the eluent from the commonly used 0.1-0.2 to 0.05%, the separation system was successfully coupled to electrospray ionization mass spectrometry (ESI-MS) at the cost of only a small decrease in separation efficiency. Detection limits for proteins with ESI-MS were in the lower femtomole range. High-quality mass spectra were extracted from the reconstructed ion chromatograms, from which the masses of both peptides and proteins were deduced at a mass accuracy of 50-150 ppm. The applicability of monolithic column technology in proteomics was demonstrated by the mass fingerprinting of tryptic peptides of bovine catalase and human transferrin and by the analysis of membrane proteins related to the photosystem II antenna complex of higher plants.  相似文献   

3.
Macroporous poly(styrene-divinylbenzene) (PS-DVB) monoliths were prepared by in situ polymerization in PEEK, fused silica, or stainless steel tubing having an inner diameter of 75 or 125 microm. A process is described for subsequent alkylation of the flow-contacting surfaces of the monoliths. The process treats all the surfaces including through-pore surfaces of the rigid macroporous monolith with a solution containing a dissolved Friedel-Crafts catalyst, an alkyl halide (1-chlorooctadecane), and an organic solvent. This process produces an improved reversed-phase liquid chromatographic separation of peptides compared to an unmodified monolithic PS-DVB column. The surface octadecylation is not necessary for a reversed-phase separation of proteins since both unmodified and modified columns provide comparable results. Tryptic protein digests, standard proteins, and standard peptides were used to evaluate the monolithic columns by employing electrospray mass spectrometry detection. Potential applications in proteomics studies by mass spectrometry, which use the alkylated monolithic column engaged onto the nanofabricated electrospray ionization chip, are also discussed.  相似文献   

4.
Tholey A  Toll H  Huber CG 《Analytical chemistry》2005,77(14):4618-4625
Efficient chromatographic separation is a prerequisite for the sensitive analysis of complex peptide mixtures using liquid chromatography-mass spectrometry. This is especially true for the analysis of mixtures of unmodified and posttranslationally modified peptides, for example, phosphorylated peptides in the presence of their unmodified analogues. Applying monolithic capillary columns based on poly(styrene/divinylbenzene), the influence of acidic eluents based on trifluoroacetic and heptafluorobutyric acid as well as an alkaline eluent based on triethylamine-acetic acid (pH 9.2) on the separation of synthetic phosphopeptides was evaluated. Heptafluorobutyric acid offered the longest retention times and highest selectivities and, hence, the most effective separation. Application of the alkaline eluent in conjunction with detection in negative ion mode electrospray ionization mass spectrometry, on the other hand, allowed the detection of phosphorylated peptides with significantly lower limits of detection, as compared to acidic eluents in combination with detection in positive ion mode. Pairs of phosphorylated and nonphosphorylated synthetic peptides, ranging from 7- to 16-mers, as well as phosphorylated peptides form a tryptic protein digest could be separated both at acidic and alkaline pH. Utilizing a 60 x 0.20-mm-i.d. capillary column, the limit of detection in negative ion detection mode for a 4-fold phosphorylated peptide in a beta-casein digest was 10 fmol. Together with the capability for fast separation of protein digests, monolithic columns, thus, facilitate the effective and sensitive analysis of this important posttranslational modification.  相似文献   

5.
Long monolithic silica-C18 capillary columns of 100 microm i.d. were prepared, and the efficiency was examined using reversed-phase HPLC under a pressure of up to 47 MPa. At linear velocities of 1-2 mm/s, 100,000-500,000 theoretical plates could be generated with a single column (90-440 cm in length) using an acetonitrile-water (80/20) mobile phase with a column dead time (t0) of 5-40 min. It was possible to prepare columns with a minimum plate height of 8.5 +/- 0.5 microm and permeability of (1.45 +/- 0.09) x 10(-13) m(2). The chromatographic performance of a long octadecylsilylated monolithic silica capillary column was demonstrated by the high-efficiency separations of aromatic hydrocarbons, benzene derivatives, and a protein digest. The efficiency for a peptide was maintained for an injection of up to 0.5-2 ng. When three 100 microm i.d. columns were connected to form a 1130-1240 cm column system, 1,000,000 theoretical plates were generated for aromatic hydrocarbons with retention factors of up to 2.4 with a t0 of 150 min. The fact that very high efficiencies were obtained for the retained solutes suggests the practical utility of these long monolithic silica capillary columns.  相似文献   

6.
Mixtures of inorganic ions separated by capillary electrophoresis (CE) and ion exchange chromatography (IC) are detected by mass spectrometry (MS) using an ion spray atmospheric pressure ionization source. The selectable degree of ion-adduct declustering and molecular fragmentation in the MS interface region allows the system to be operated as an elemental analyzer or as a molecular detector suitable for oxidation state determinations. Both inorganic anions and cations (including alkalis, alkaline earths, transition metals, and lanthanides) are analyzed by CE-MS. A variety of CE separation buffers are evaluated for the cation analyses (e.g., creatinine, ammonium acetate, and tris[hydroxymethyl]aminomethane). Only one of the buffers (i.e., creatinine) can be used for CE-indirect UV detection. A CE capillary permanently coated with strong anion exchange sites and a pyromellitic acid buffer (suitable for indirect UV detection) is used for the inorganic anion separations. The coated column eliminates the need for buffer modifiers to reverse the flow in the capillary, which then reduces background noise and mass spectral complexity. The separation and detection of 13 inorganic anions are also accomplished by IC using an anion exchange column with a carbonate-bicarbonate mobile phase, on-line suppressed conductivity detection, and mass spectrometric detection.  相似文献   

7.
Polyethylene glycol diacrylate monoliths prepared using different amounts of monomer, porogen ratio, and capillary dimensions were characterized using capillary flow porometry (CFP) and scanning electron microscopy (SEM). Our results reveal good agreement between SEM and CFP measurements for through-pore size distribution. The CFP measurements for monoliths prepared by the same procedure in capillaries with different diameters (i.e., 75, 150, and 250 μm) clearly confirmed a change in through-pore size distribution with capillary diameter, thus, certifying the need for in-column measurement techniques over bulk measurements (e.g., mercury intrusion porosimetry). The mean through-pore size varied from 3.52 to 1.50 μm with a change in capillary diameter from 75 to 250 μm. Consistent mean through-pore size distribution for capillary columns with the same internal diameter but with different lengths (1.5, 2, and 3 cm) confirms the high interconnectivity of the pores and independence of CFP measurements with respect to capillary length. CFP and SEM measurements not only allow pore structure analysis but also prediction of relative column performance. Monoliths with narrow through-pore size distribution (0.8-1.2 μm), small mean through-pore size, and thin skeletal size (0.55 μm) gave the best performance in terms of efficiency for polyethylene glycol diacrylate monoliths.  相似文献   

8.
Que AH  Novotny MV 《Analytical chemistry》2002,74(20):5184-5191
While developing a combination of capillary electrochromatography (CEC) with tandem mass spectrometry (MS) for the benefit of characterizing complex oligosaccharide mixtures, we needed highly efficient CEC columns operating in an "MS-friendly" mode. We demonstrate here novel types of polar, monolithic CEC columns that separate effectively complex mixtures of saccharides with the use of mobile phases containing acetonitrile/dilute ammonium formate buffers. Using the positive-ion mode of detection for neutral saccharides, the detection conditions were optimized down to the low-femtomole sensitivities with the use of an ion trap mass spectrometer. This column technology provides a nearly universal system that can separate a wide range of carbohydrates: mono- and oligosaccharides with the intact reducing end, as well as saccharide alditols. Even the anomers formed due to mutarotation could be resolved with a high content of organic phase.  相似文献   

9.
10.
The identification and quantification of specific phosphorylation sites within a protein by mass spectrometry has proved challenging when measured from peptides after protein digestion because each peptide has a unique ionization efficiency that alters with modification, such as phosphorylation, and because phosphorylation can alter cleavage by trypsin, shifting peptide distribution. In addition, some phosphorylated peptides generated by tryptic digest are small and hydrophilic and, thus, are not retained well on commonly used C18 columns. We have developed a novel C-terminal peptide (2)H-labeling derivatization strategy and a mass balance approach to quantify phosphorylation. We illustrate the application of our method using electrospray ionization liquid chromatography-mass spectrometry by quantifying phosphorylation of troponin I with protein kinase A and protein kinase C. The method also improves the retention and elution of hydrophilic peptides. The method defines phosphorylation without having to measure the phosphorylated peptides directly or being affected by variable miscleavage. Measurement of phosphorylation is shown to be linear (relative standard error <5%) with a detection limit of <10%.  相似文献   

11.
A simple, low-cost capillary electrophoresis-mass spectrometry (CE-MS) method is demonstrated for the simultaneous analysis of amino acids and small carboxylic acids (glycerate, lactate, fumarate, succinate, malate, tartrate, citrate, iso-citrate, cis-aconitate, and shikimate). All CE-MS experiments were performed using a single uncoated fused-silica capillary and with a single separation electrolyte, formic acid. For CE polarity, the CE inlet was set as the anode, and the MS side was set as the cathode. By using high-speed sheath gas flow, the apparent mobilities of all compounds were sped up; thus, the migration times of the carboxylic acids were reduced. In positive ion mode ESI-MS detection, small carboxylic acids were detected faintly as m/z = [M + 18](+) or [M + 23](+), after protonated molecule detection (m/z = [M + 1](+)) of the amino acids. In negative ion mode, all of these small carboxylic acids were detected clearly as deprotonated molecules (m/z = [M - 1](-)), after detection of the amino acids. By changing the polarity of the MS during CE separation, both amino acids and small carboxylic acids were detectable in a single electrophoresis analysis run. With this method, the diurnal metabolic changes of pineapple leaves were observed as reflecting Crassulacean acid metabolism.  相似文献   

12.
The development of bioaffinity chromatography columns that are based on the entrapment of biomolecules within the pores of sol-gel-derived monolithic silica is reported. Monolithic nanoflow columns are formed by mixing the protein-compatible silica precursor diglycerylsilane with a buffered aqueous solution containing poly(ethylene oxide) (PEO, MW 10,000) and the protein of interest and then loading this mixture into a fused-silica capillary (150-250-microm i.d.). Spinodal decomposition of the PEO-doped sol into two distinct phases prior to the gelation of the silica results in a bimodal pore distribution that produces large macropores (>0.1 microm), to allow good flow of eluent with minimal back pressure, and mesopores (approximately 3-5-nm diameter) that retain a significant fraction of the entrapped protein. Addition of low levels of (3-aminopropyl)triethoxysilane is shown to minimize nonselective interactions of analytes with the column material, resulting in a column that is able to retain small molecules by virtue of their interaction with the entrapped biomolecules. Such columns are shown to be suitable for pressure-driven liquid chromatography and can be operated at relatively high flow rates (up to 500 microL x min(-1)) or with low back pressures (<100 psi) when used at flow rates of 5-10 microL x min(-1). The clinically relevant enzyme dihydrofolate reductase was entrapped within the bioaffinity columns and was used to screen mixtures of small molecules using frontal affinity chromatography with mass spectrometric detection. Inhibitors present in compound mixtures were retained via bioaffinity interactions, with the retention time being dependent on both the ligand concentration and the affinity of the ligand for the protein. The results suggest that such columns may find use in high-throughput screening of compound mixtures.  相似文献   

13.
Frontal affinity chromatography (FAC) interfaced with electrospray mass spectrometry (ESI-MS) has been reported as a potential method for screening of compound mixtures against immobilized target proteins. However, the interfacing of bioaffinity columns to ESI-MS requires that the eluent that passes through the protein-loaded column have a relatively low ionic strength to produce a stable spray. Such low ionic strength solvents can cause serious problems with protein stability and may also affect binding constants and lead to high nonspecific binding to the column. Herein, we report on the interfacing of bioaffinity columns to matrix-assisted laser desorption/ionization (MALDI) MS/MS as a new platform for FAC/MS studies. Capillary columns containing a monolithic silica material with entrapped dihydrofolate reductase were used for frontal affinity chromatography of small-molecule mixtures. The output from the column was combined with a second stream containing alpha-cyano-hydoxycinnamic acid in methanol and was deposited using a nebulizer-assisted electrospray method onto a conventional MALDI plate that moved relative to the column via a computer-controlled x-y stage, creating a semipermanent record of the FAC run. The use of MALDI MS/MS allowed for buffers with significantly higher ionic strength to be used for FAC studies, which reduced nonspecific binding of ionic compounds and allowed for better retention of protein activity over multiple runs. Following deposition, MALDI analysis required only a fraction of the chromatographic run time, and the deposited track could be rerun multiple times to optimize ionization parameters and allow signal averaging to improve the signal-to-noise ratio. Furthermore, high levels of potential inhibitors could be detected via MALDI with limited ion suppression effects. Both MALDI- and ESI-based analysis showed similar retention of inhibitors present in compound mixtures when using identical ionic strength conditions. The results show that FAC/MALDI-MS should provide advantages over FAC/ESI-MS for high-throughput screening of compound mixtures.  相似文献   

14.
In this study, we propose for the first time the use of solid-phase microextraction (SPME) in combination with liquid chromatography-mass spectrometry for untargeted metabolomic profiling of biological fluids. To achieve this goal, we first systematically evaluated 42 different SPME coatings for the extraction of 36 metabolites from different chemical classes and of widely varying polarities (log P range of -7.9 to 7.4) in order to identify SPME coatings which are the most suitable for metabolomic studies and to improve the extraction of polar metabolites over the existing commercial SPME devices. Three types of SPME coatings (mixed-mode coatings, polar-enhanced polystyrene-divinylbenzene, and phenylboronic acid) performed the best for simultaneous extraction of both hydrophilic and hydrophobic metabolites at physiological conditions, thus making them suitable for untargeted metabolomic profiling applications. A rapid and simple SPME method was then developed with single-use biocompatible mixed-mode coating for the metabolomic profiling of human plasma in combination with liquid chromatography-high-resolution mass spectrometry on a benchtop Orbitrap system. This optimized SPME method was evaluated versus ultrafiltration and solvent precipitation in terms of metabolite coverage and method precision. SPME detected 1592-3320 features versus 2082-3245 features detected by solvent precipitation methods and 2093-2686 detected for ultrafiltration using the same pooled human plasma sample. Method precision of SPME ranged between 11% and 18% (expressed as median relative standard deviation (RSD) of n = 7 replicates) versus 8-19% for solvent precipitation and 20-22% for ultrafiltration. The results demonstrate that the proposed SPME methodology reduces ionization suppression, provides free concentration information for hydrophobic analytes which are not detected by ultrafiltration methods, and can improve metabolite coverage over existing methodologies.  相似文献   

15.
In vivo neurochemical monitoring using microdialysis sampling is important in neuroscience because it allows correlation of neurotransmission with behavior, disease state, and drug concentrations in the intact brain. A significant limitation of current practice is that different assays are utilized for measuring each class of neurotransmitter. We present a high performance liquid chromatography (HPLC)-tandem mass spectrometry method that utilizes benzoyl chloride for determination of the most common low molecular weight neurotransmitters and metabolites. In this method, 17 analytes were separated in 8 min. The limit of detection was 0.03-0.2 nM for monoamine neurotransmitters, 0.05-11 nM for monoamine metabolites, 2-250 nM for amino acids, 0.5 nM for acetylcholine, 2 nM for histamine, and 25 nM for adenosine at sample volume of 5 μL. Relative standard deviation for repeated analysis at concentrations expected in vivo averaged 7% (n = 3). Commercially available (13)C benzoyl chloride was used to generate isotope-labeled internal standards for improved quantification. To demonstrate utility of the method for study of small brain regions, the GABA(A) receptor antagonist bicuculline (50 μM) was infused into a rat ventral tegmental area while recording neurotransmitter concentration locally and in nucleus accumbens, revealing complex GABAergic control over mesolimbic processes. To demonstrate high temporal resolution monitoring, samples were collected every 60 s while neostigmine, an acetylcholine esterase inhibitor, was infused into the medial prefrontal cortex. This experiment revealed selective positive control of acetylcholine over cortical glutamate.  相似文献   

16.
Polymer-based strong cation-exchange monolithic capillary columns with different capacities were constructed for ion chromatography by radical polymerization of glycidyl methacrylate (GMA) and ethylene dimethacrylate in a 250-microm-i.d. fused-silica capillary and its subsequent sulfonation based on ring opening of epoxides with 1 M Na(2)SO(3). The cation-exchange capacities can easily and reproducibly be controlled in the range of up to 300 microequiv/mL by changing the immersion time of the epoxy-containing polymer in the Na(2)SO(3) solution. The chromatographic performance of the produced monolithic capillary columns was evaluated through the separation of a model mixture of common cations such as Na(+), NH(4)(+), K(+), Mg(2+), and Ca(2+). As an example, these cations could be well separated from one another on a 15-cm-long cation-exchange monolithic column (column volume, 7.4 microL) with a capacity of 150 microequiv/mL by elution with 10 mM CuSO(4). The pressure drop of this 15-cm column was approximately 1 MPa at a normal linear velocity of 1 mm/s (a flow rate of 3 microL/min), and the numbers of theoretical plates for the cations were above 3000 plates/15 cm. This GMA-based cation-exchange monolithic column could withstand high linear velocities of at least 10 mm/s. Over a period of at least two weeks of continuous use, no significant changes in the selectivity and resolution were observed. The applicability of a flow rate gradient elution and the feasibility of direct injection determination of major cations in human saliva sample were also presented.  相似文献   

17.
Using sol-gel technology, a porous glass matrix (xerogel) is formed in a capillary column and acts as a support for a stationary phase of chromatographic particles used in capillary electrochromatography. Preparation of the sol-gel matrix and immobilization of the octadecylsilica (ODS) stationary phase occur in a single step. The presence of the particles in the column greatly reduces matrix cracking caused by internal pressure differentials within the pores of the sol-gel matrix. Good electroosmotic flow is achieved in part because of the inherent negative charge of both the particles and the sol-gel matrix. The performance of these sol-gel/ODS capillary columns was evaluated with a mixture of aromatic and nonaromatic organic compounds. Efficiencies of up to 80?000 plates/m were observed in columns with immobilized 3-μm ODS particles. The efficiency and resolution are enhanced when 3-μm ODS particles are used in place of the 5-μm particles.  相似文献   

18.
Labeling reagents that differ only in their isotopic composition offer a powerful approach to achieve relative quantification between samples by ESI-MS. Heavy and light isotopic forms of cholamine, which contain a positively charged quaternary ammonium group, were synthesized and tested as new labeling reagents for the relative quantification of carboxylic acid-containing metabolites, specifically fatty acids. The positive charge on cholamine ensures that the labeled product is also positively charged under all LC-MS conditions, regardless of mobile-phase pH. This leads to high ionization efficiency and correspondingly high detection sensitivity, demonstrated here for the analysis of fatty acids in positive ion mode ESI-MS after reversed-phase separation under acidic conditions. Good accuracy and precision were obtained by mixing heavy- and light-labeled hydrolyzed egg lipid extracts in different known ratios. The relative quantification results for 10 observed fatty acids had an average absolute error of 4.6% and an average coefficient of variation (CV) of 2.6%. The labeling strategy yielded a median CV of 6% when employed for fatty acid analysis of eggs from chickens fed various dietary supplements.  相似文献   

19.
Stable isotope labeling of an intracellular chemical precursor or metabolite allows direct detection of downstream metabolites of that precursor, arising from novel enzymatic activity of interest, using metabolite profiling liquid chromatography-mass spectrometry. This approach allows the discrimination of downstream metabolites produced from novel enzymatic activity from the unlabeled form of the metabolite arising from native metabolic processes within the cell. Even for the case in which a given product of novel enzymatic activity is a transient, the novel enzymatic activity that produced it can be demonstrated to exist indirectly by identification of product-specific downstream metabolites. Therefore, direct or indirect discovery of novel enzymatic machinery engineered within a cell can be accomplished without a requirement for direct product purification or identification. The application of this approach to confirm the presence of a novel metabolic activity, alanine 2,3-aminomutase, obtained by mutagenesis and selection are discussed. The advantages of metabolite profiling approaches to metabolic engineering in terms of accelerating enzyme discovery and development of intellectual property will also be highlighted.  相似文献   

20.
In this work, the separation and characterization of ionizable organic polymers nonsoluble in water is carried out using nonaqueous capillary electrophoresis-ion trap mass spectrometry (NACE-MS). The polymers studied are poly(N(epsilon)-trifluoroacetyl-l-lysine) (poly(TFA-Lys)) obtained by ring-opening polymerization of the corresponding N-carboxyanhydride. Different parameters (i.e., liquid sheath nature and flow rate, electrospray temperature, and separation buffer composition) are optimized in order to obtain both an adequate CE separation and a high MS signal of the samples under study. The optimum NACE-MS separation conditions allow the molecular mass characterization of poly(TFA-Lys) up to a degree of polymerization of 38. NACE-MS provides interesting information on the chemical structure of (i). the polymer end groups and (ii). other final byproducts. The MS spectra obtained by using this CE-MS protocol confirm that the polymerization was initiated by the reaction of n-hexylamine (initiator) on the monomer. CE-MS-MS and CE-MS-MS-MS results demonstrate that two different termination reactions occurred during the polymerization process leading to the transformation of the reactive amine end group into a carboxylic or a formyl groups. Byproducts such as 3-hydantoinacetic acid or diketopiperazine were also detected. To our knowledge, this is the first work in which the great possibilities of NACE-MS and NACE-MS(n) for characterizing synthetic polymers are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号