首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4A to form the eIF4F complex. eIF4E is an important modulator of cell growth and proliferation. It is the least abundant component of the translation initiation machinery and its activity is modulated by phosphorylation and interaction with eIF4E-binding proteins (4E-BPs). One strong candidate for the eIF4E kinase is the recently cloned MAPK-activated protein kinase, Mnk1, which phosphorylates eIF4E on its physiological site Ser209 in vitro. Here we report that Mnk1 is associated with the eIF4F complex via its interaction with the C-terminal region of eIF4G. Moreover, the phosphorylation of an eIF4E mutant lacking eIF4G-binding capability is severely impaired in cells. We propose a model whereby, in addition to its role in eIF4F assembly, eIF4G provides a docking site for Mnk1 to phosphorylate eIF4E. We also show that Mnk1 interacts with the C-terminal region of the translational inhibitor p97, an eIF4G-related protein that does not bind eIF4E, raising the possibility that p97 can block phosphorylation of eIF4E by sequestering Mnk1.  相似文献   

2.
N4G3, a cell line that overexpresses translation initiation factor eIF4G, one of the components of eIF4F, was made by stable transfection of the human eIF4G cDNA into NIH3T3 cells. The cells expressed 80-100 times greater levels of eIF4G mRNA than did NIH3T3 cells. N4G3 cells formed transformed foci on a monolayer of cells, showed anchorage-independent growth, and formed tumors in nude mice. These results indicate that overexpression of eIF4G caused malignant transformation of NIH3T3 cells. It is also known that overexpression of eIF4E, another component of eIF4F, causes transformation of NIH3T3 cells. However, there was no difference in the amount of eIF4E protein between N4G3 and NIH3T3 cells, indicating that cell transformation does not involve a change in eIF4E levels. The results may be due to an effect of eIF4G on translational control of protein synthesis directed by mRNAs having long 5'-untranslated region.  相似文献   

3.
The PRT1, TIF34, GCD10, and SUI1 proteins of Saccharomyces cerevisiae were found previously to copurify with eukaryotic translation initiation factor 3 (eIF3) activity. Although TIF32, NIP1, and TIF35 are homologous to subunits of human eIF3, they were not known to be components of the yeast factor. We detected interactions between PRT1, TIF34, and TIF35 by the yeast two-hybrid assay and in vitro binding assays. Discrete segments (70-150 amino acids) of PRT1 and TIF35 were found to be responsible for their binding to TIF34. Temperature-sensitive mutations mapping in WD-repeat domains of TIF34 were isolated that decreased binding between TIF34 and TIF35 in vitro. The lethal effect of these mutations was suppressed by increasing TIF35 gene dosage, suggesting that the TIF34-TIF35 interaction is important for TIF34 function in translation. Pairwise in vitro interactions were also detected between PRT1 and TIF32, TIF32 and NIP1, and NIP1 and SUI1. Furthermore, PRT1, NIP1, TIF34, TIF35, and a polypeptide with the size of TIF32 were specifically coimmunoprecipitated from the ribosomal salt wash fraction. We propose that all five yeast proteins homologous to human eIF3 subunits are components of a stable heteromeric complex in vivo and may comprise the conserved core of yeast eIF3.  相似文献   

4.
5.
Only five of the nine subunits of human eukaryotic translation initiation factor 3 (eIF3) have recognizable homologs encoded in the Saccharomyces cerevisiae genome, and only two of these (Prt1p and Tif34p) were identified previously as subunits of yeast eIF3. We purified a polyhistidine-tagged form of Prt1p (His-Prt1p) by Ni2+ affinity and gel filtration chromatography and obtained a complex of approximately 600 kDa composed of six polypeptides whose copurification was completely dependent on the polyhistidine tag on His-Prt1p. All five polypeptides associated with His-Prt1p were identified by mass spectrometry, and four were found to be the other putative homologs of human eIF3 subunits encoded in S. cerevisiae: YBR079c/Tif32p, Nip1p, Tif34p, and YDR429c/Tif35p. The fifth Prt1p-associated protein was eIF5, an initiation factor not previously known to interact with eIF3. The purified complex could rescue Met-tRNAiMet binding to 40S ribosomes in defective extracts from a prt1 mutant or extracts from which Nip1p had been depleted, indicating that it possesses a known biochemical activity of eIF3. These findings suggest that Tif32p, Nip1p, Prt1p, Tif34p, and Tif35p comprise an eIF3 core complex, conserved between yeast and mammals, that stably interacts with eIF5. Nip1p bound to eIF5 in yeast two-hybrid and in vitro protein binding assays. Interestingly, Sui1p also interacts with Nip1p, and both eIF5 and Sui1p have been implicated in accurate recognition of the AUG start codon. Thus, eIF5 and Sui1p may be recruited to the 40S ribosomes through physical interactions with the Nip1p subunit of eIF3.  相似文献   

6.
BACKGROUND: Eukaryotic initiation factor 4E (eIF-4E) is a 25-kilodalton phosphoprotein that binds specifically to mRNA as the initial step for mRNA translation. An elevated level of eIF4E has been associated with the up-regulation of various protooncogene products. Transfection of cell lines by viral vectors with eIF4E overexpression has resulted in malignant transformation. The objective in this study was twofold: to examine benign and malignant breast specimens for eIF4E expression, and to determine whether eIF4E overexpression may have prognostic potential. METHODS: Western blot analysis was performed on benign and malignant breast specimens using anti-eIF4E rabbit antiserum. Quantification was accomplished by developing blots with nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl phosphate and densitometry. Confirmation of eIF4E overexpression at the cellular level was performed using immunohistologic staining in situ. RESULTS: The authors examined 112 breast specimens for eIF4E protein expression. Of the 52 benign breast specimens examined, none showed eIF4E overexpression. All 12 ductal carcinoma in situ specimens were found to overexpress eIF4E in the intermediate range (mean elevation: 2.5-fold). Of the 48 breast carcinoma specimens examined, all had eIF4E elevation at levels of 3-30-fold (mean: 10.5 +/- 0.9-fold). Charts from 39 patients with Stage I, II, and III breast carcinoma were reviewed. In ten patients with eIF4E overexpression of < sevenfold, there was no recurrence or death from breast carcinoma. In the 29 breast carcinoma patients with > or = 7-fold eIF4E overexpression, 9 patients had breast carcinoma recurrences and 5 had died from disease at last follow-up. The median follow-up in this study was 34.5 months. CONCLUSIONS: Overexpression of eIF4E was observed in malignant breast specimens but not in normal or benign breast tissues. In patients with breast carcinoma, the group with high eIF4E overexpression (> or = 7-fold) experienced a worse clinical outcome (higher recurrences and death) compared with the group with low eIF4E overexpression (< 7-fold).  相似文献   

7.
We show that cells deleted for SNF3, HXT1, HXT2, HXT3, HXT4, HXT6, and HXT7 do not take up glucose and cannot grow on media containing glucose as a sole carbon source. The expression of Hxt1, Hxt2, Hxt3, Hxt6, or Gal2 in these cells resulted in glucose transport and allowed growth on glucose media. In contrast, the expression of Snf3 failed to confer glucose uptake or growth on glucose. HXT6 is highly expressed on raffinose, low glucose, or nonfermentable carbon sources but is repressed in the presence of high concentrations of glucose. The maintenance of HXT6 glucose repression is strictly dependent on Snf3 and not on intracellular glucose. In snf3 delta cells expression of HXT6 is constitutive even when the entire repertoire of HXT genes is present and glucose uptake is abundant. In addition, glucose repression of HXT6 does not require glucose uptake by HXT1, HXT2, HXT3 or HXT4. We show that a signal transduction pathway defined by the Snf3-dependent hexose regulation of HXT6 is distinct from but also overlaps with general glucose regulation pathways in Saccharomyces cerevisiae. Finally, glucose repression of ADH2 and SUC2 is intact in snf3 delta hxt1 delta hxt2 delta hxt3 delta hxt4 delta hxt6 delta hxt7 delta gal2 cells, suggesting that the sensing and signaling mechanism for general glucose repression is independent from glucose uptake.  相似文献   

8.
9.
We have investigated the effect of inducing apoptosis in BJAB and Jurkat cells on the cellular content of several polypeptide chain initiation factors. Serum deprivation results in inhibition of protein synthesis and induction of apoptosis in BJAB cells; at early times, there is selective degradation of polypeptide initiation factor eIF4G but no major losses of other key initiation factors. The disappearance of full length eIF4G is accompanied by the appearance of smaller forms of the protein, including a major product of approximately 76 kDa. Apoptosis induced by cycloheximide results in similar effects. Both total cytoplasmic eIF4G and eIF4G associated with eIF4E are degraded with a half-life of 2-4 h under these conditions. Treatment of serum-starved or cycloheximide-treated cells with Z-VAD.FMK or Z-DEVD.FMK, which inhibit caspases required for apoptosis, protects eIF4G from degradation and blocks the appearance of the ca. 76 kDa product. Exposure of BJAB cells to rapamycin rapidly inhibits protein synthesis but does not lead to acute degradation of eIF4G. In both BJAB and Jurkat cells induction of apoptosis with anti-Fas antibody or etoposide also results in the selective loss of eIF4G, which is inhibitable by Z-VAD.FMK. These data suggest that eIF4G is selectively targeted for cleavage as cells undergo apoptosis and is a substrate for proteases activated during this process.  相似文献   

10.
The Saccharomyces cerevisiae TIF3 gene encodes a 436-amino acid (aa) protein that is the yeast homologue of mammalian translation Initiation factor eIF4B. Tif3p can be divided into three parts, the N-terminal region with an RNA recognition motif (RRM) (aa 1-182), followed in the middle part by a sevenfold repeat of 26 amino acids rich in basic and acidic residues (as 183-350), and a C-terminal region without homology to any known sequence (aa 351-436). We have analyzed several Tif3 proteins with deletions at their N and C termini for their ability (1) to complement a tif3delta strain in vivo, (2) to stimulate Tif3-dependent translation extracts, (3) to bind to single-stranded RNA, and (4) to catalyze RNA strand-exchange in vitro. Here we report that yeast Tif3/eIF4B contains at least two RNA binding domains able to bind to single-stranded RNA. One is located in the N-terminal region of the protein carrying the RRM, the other in the C-terminal two-thirds region of Tif3p. The RRM-containing domain and three of the seven repeat motifs are essential for RNA strand-exchange activity of Tif3p and translation in vitro and for complementation of a tif3delta strain, suggesting an important role for RNA strand-exchange activity in translation.  相似文献   

11.
Eukaryotic translation initiation factor 3 (eIF3) is a large multisubunit protein complex that plays an essential role in the binding of the initiator methionyl-tRNA and mRNA to the 40S ribosomal subunit to form the 40S initiation complex. cDNAs encoding all the subunits of mammalian eIF3 except the p42 subunit have been cloned in several laboratories. Here we report the cloning and characterization of a human cDNA encoding the p42 subunit of mammalian eIF3. The open reading frame of the cDNA, which encodes a protein of 320 amino acids (calculated Mr35 614) has been expressed in Escherichia coli and the recombinant protein has been purified to homogeneity. The purified protein binds RNA in agreement with the presence of a putative RNA binding motif in the deduced amino acid sequence. The protein shows 33% identity and 53% similarity with the Tif35p subunit (YDR 429C) of yeast eIF3. Transfection experiments demonstrated that polyhistidine-tagged p42 protein, transiently expressed in human U20S cells, was incorporated into endogenous eIF3. Furthermore, eIF3 isolated from transfected cell lysates contains bound eIF5 indicating that a specific physical interaction between eIF5 and eIF3 may play an important role in the function of eIF5 during translation initiation in eukaryotic cells.  相似文献   

12.
13.
Fascin is an actin-bundling protein that was first isolated from cytoplasmic extracts of sea urchin eggs [Kane, 1975: J. Cell Biol. 66:305-315] and was the first bundling protein to be characterized in vitro. Subsequent work has shown that fascin bundles actin filaments in fertilized egg microvilli and filopodia of phagocytic coelomocytes [Otto et al., 1980: Cell Motil. 1:31-40; Otto and Bryan, 1981: Cell Motil. 1:179-192]. Fifteen years later, the molecular cloning of sea urchin fascin [Bryan et al., 1993: Proc. Natl. Acad. Sci. U.S.A. 90:9115-9119] has led to the identification and characterization of homologous proteins in Drosophila [Cant et al., 1994: J. Cell Biol. 125:369-380], Xenopus [Holthuis et al., 1994: Biochim. Biophys. Acta. 1219:184-188], rodents [Edwards et al,. 1995: J. Biol. Chem. 270:10764-10770], and humans [Duh et al., 1994: DNA Cell Biol. 13:821-827; Mosialos et al., 1994: J. Virol. 68:7320-7328] that bundle actin filaments into structures which stabilize cellular processes ranging from mechanosensory bristles to the filopodia of nerve growth cones. Fascin has emerged from relative obscurity as an exotic invertebrate egg protein to being recognized as a widely expressed protein found in a broad spectrum of tissues and organisms. The purpose of this review is to relate the early studies done on the sea urchin and HeLa cell fascins to the recent molecular biology that defines a family of bundling proteins, and discuss the current state of knowledge regarding fascin structure and function.  相似文献   

14.
In the initiation of translation in eukaryotes, binding of the small ribosomal subunit to the messenger RNA results from recognition of the 5' cap structure (m7GpppX) of the mRNA by the cap-binding complex eIF4F. eIF4F is itself a three-subunit complex comprising the cap-binding protein eIF4E, eIF4A, an ATP-dependent RNA helicase, and eIF4G, which interacts with both eIF4A and eIF4E and enhances cap binding by eIF4E. The mRNA 3' polyadenylate tail and the associated poly(A)-binding protein (PABP) also regulate translational initiation, probably by interacting with the 5' end of the mRNA. In yeast and plants, PABP interacts with eIF4G but no such interaction has been reported in mammalian cells. Here, we describe a new human PABP-interacting protein, PAIP-I, whose sequence is similar to the central portion of eIF4G and which interacts with eIF4A. Overexpression of PAIP-1 in COS-7 cells stimulates translation, perhaps by providing a physical link between the mRNA termini.  相似文献   

15.
We have isolated and characterized two suppressor genes, SUI4 and SUI5, that can initiate translation in the absence of an AUG start codon at the HIS4 locus in Saccharomyces cerevisiae. Both suppressor genes are dominant in diploid cells and lethal in haploid cells. The SUI4 suppressor gene is identical to the GCD11 gene, which encodes the gamma subunit of the eIF-2 complex and contains a mutation in the G2 motif, one of the four signature motifs that characterizes this subunit to be a G-protein. The SUI5 suppressor gene is identical to the TIF5 gene that encodes eIF-5, a translation initiation factor known to stimulate the hydrolysis of GTP bound to eIF-2 as part of the 43S preinitiation complex. Purified mutant eIF-5 is more active in stimulating GTP hydrolysis in vitro than wild-type eIF-5, suggesting that an alteration of the hydrolysis rate of GTP bound to the 43S preinitiation complex during ribosomal scanning allows translation initiation at a non-AUG codon. Purified mutant eIF-2gamma complex is defective in ternary complex formation and this defect correlates with a higher rate of dissociation from charged initiator-tRNA in the absence of GTP hydrolysis. Biochemical characterization of SUI3 suppressor alleles that encode mutant forms of the beta subunit of eIF-2 revealed that these mutant eIF-2 complexes have a higher intrinsic rate of GTP hydrolysis, which is eIF-5 independent. All of these biochemical defects result in initiation at a UUG codon at the his4 gene in yeast. These studies in light of other analyses indicate that GTP hydrolysis that leads to dissociation of eIF-2 x GDP from the initiator-tRNA in the 43S preinitiation complex serves as a checkpoint for a 3-bp codon/anticodon interaction between the AUG start codon and the initiator-tRNA during the ribosomal scanning process.  相似文献   

16.
17.
Eukaryotic initiation factor 3 (eIF3) consists of at least eight subunits and plays a key role in the formation of the 43 S preinitiation complex by dissociating 40 and 60 S ribosomal subunits, stabilizing the ternary complex, and promoting mRNA binding to 40 S ribosomal subunits. The product of the Saccharomyces cerevisiae RPG1 gene has been described as encoding a protein required for passage through the G1 phase of the cell cycle and exhibiting significant sequence similarity to the largest subunit of human eIF3. Here we show that under nondenaturing conditions, Rpg1p copurifies with a known yeast eIF3 subunit, Prt1p. An anti-Rpg1p antibody co-immunoprecipitates Prt1p, and an antibody directed against the Myc tag of a tagged version of Prt1p co-immunoprecipitates Rpg1p, demonstrating that both proteins are present in the same complex. A cell-free translation system derived from the temperature-sensitive rpg1-1 mutant strain becomes inactivated by incubation at 37 degreesC, and its activity can be restored by the addition of the Rpg1-containing protein complex. Finally, the rpg1-1 temperature-sensitive mutant strain shows a dramatic reduction of the polysome/monosome ratio upon shift to the restrictive temperature. These data show that Rpg1p is an authentic eIF3 subunit and plays an important role in the initiation step of translation.  相似文献   

18.
In an attempt to further understand how nuclear events (such as gene expression, nuclear import/export, and cell cycle checkpoint control) might be subject to regulation by extracellular stimuli, we sought to identify nuclear activities under growth factor control. Using a sensitive photoaffinity labeling assay that measured [alpha-32P]GTP incorporation into nuclear proteins, we identified the 20-kDa subunit of the nuclear cap-binding complex (CBC) as a protein whose binding activity is greatly enhanced by the extracellular stimulation of serum-arrested cells. The CBC represents a 20- and 80-kDa heterodimer (the subunits independently referred to as CBP20 and CBP80, respectively) that binds the 7-methylguanosine cap on RNAs transcribed by RNA polymerase II. This binding facilitates precursor messenger RNA splicing and export. We have demonstrated that the [alpha-32P]GTP incorporation into CBP20 was correlated with an increased ability of the CBC to bind capped RNA and have used the [alpha-32P]GTP photoaffinity assay to characterize the activation of the CBC in response to growth factors. We show that the CBC is activated by heregulin in HeLa cells and by nerve growth factor in PC12 cells as well as during the G1/S phase of the cell cycle and when cells are stressed with UV irradiation. Additionally, we show that cap-dependent splicing of precursor mRNA, a functional outcome of CBC activation, can be catalyzed by growth factor addition to serum-arrested cells. Taken together, these data identify the CBC as a nuclear target for growth factor-coupled signal transduction and suggest novel mechanisms by which growth factors can influence gene expression and cell growth.  相似文献   

19.
Regulation of the 45- and 55-kDa forms of Saccharomyces cerevisiae membrane-associated phosphatidylinositol (PI) 4-kinase (ATP:phosphatidylinositol 4-phosphotransferase) by phospholipids was examined using Triton X-100/phospholipid-mixed micelles. CDP-diacylglycerol and phosphatidylglycerol inhibited 45-kDa PI 4-kinase activity in a dose-dependent manner. Kinetic analyses of the 45-kDa PI 4-kinase showed that phosphatidylglycerol was a competitive inhibitor with respect to PI (Ki = 2 mol %), and CDP-diacylglycerol was a mixed type of inhibitor with respect to PI (Ki = 4 mol %) and MgATP (Ki = 5 mol %). 55-kDa PI 4-kinase activity was not significantly affected by phospholipids. The physiological relevance of CDP-diacylglycerol inhibition of 45-kDa PI 4-kinase activity was examined using plasma membranes from inositol auxotrophic (ino1) cells. Immunoblot analysis showed that 45-kDa PI 4-kinase expression in plasma membranes was not affected by inositol starvation of ino1 cells. However, both 45-kDa PI 4-kinase activity and its product PI 4-phosphate were reduced in plasma membranes from inositol-starved ino1 cells. The CDP-diacylglycerol concentration (9.6 mol %) in plasma membranes of inositol-starved ino1 cells was 12-fold higher than its concentration (0.8 mol %) in plasma membranes of inositol-supplemented cells. Plasma membranes of inositol-starved ino1 cells also had increased levels of phosphatidate, phosphatidylserine, phosphatidylethanolamine, and cardiolipin. However, these phospholipids did not affect pure 45-kDa PI 4-kinase activity. The concentration of CDP-diacylglycerol in plasma membranes of inositol-starved ino1 cells was in the range of the inhibitor constants determined for CDP-diacylglycerol by kinetic analyses using pure 45-kDa PI 4-kinase. These results raised the suggestion that 45-kDa PI 4-kinase activity may be regulated in vivo by CDP-diacylglycerol.  相似文献   

20.
Eukaryotic translation initiation factor 2 (eIF-2) is a heterotrimer composed of three subunits designated alpha, beta, and gamma. These proteins exist in equimolar amounts in the cell and have not been detected as isolated subunits. Our research examines the basis of their balanced synthesis. Northern analysis of K562 cell mRNA revealed that eIF-2 beta was five times more abundant than eIF-2 alpha. However, immunoprecipitation of pulse-labeled K562 cells showed an equimolar rate of synthesis of eIF-2 alpha and -beta despite the 5-fold difference in the size of their mRNA pools. Addition of equal amounts of synthetic capped mRNA for eIF-2 alpha and eIF-2 beta to an in vitro translation reaction produced five times more eIF-2 alpha protein than eIF-2 beta. Determination of the polysome profile for alpha and beta mRNA in K562 cells indicated eIF-2 alpha was translated more efficiently than eIF-2 beta. Substitution of either the initiation codon context or the leader of the beta mRNA for that of alpha had only a minor effect on the translational efficiency of beta. Comparison of the rate of ribosomal elongation for the two mRNAs indicated that ribosomes associated with the beta mRNA elongate at a rate 4-fold less than that of eIF-2 alpha. Thus, the balanced translation of alpha and beta mRNA is primarily the result of a 4-fold difference in the rate of ribosomal elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号