首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A change of wave form of current transients induced by a single heavy ion was investigated around a pn junction with 8 μm width and 10 μm length as a function of the ion incident position. Three pn junctions were made on a 3 μm thick Si epilayer (1 × 1016/cm3) grown on Si substrate and were in a line along an aluminum electrode with 10 μm spacing between the adjacent junctions. The elements of a pn junction array were irradiated with a 1 μm diameter 15 MeV C+ heavy ion microbeam spacing steps by 3 μm. At a bias voltage of − 10 V, 148, 91, and 54 fC were collected at the pn junction center, and at 3 μm and 4 μm from the edge of the electrode, respectively. Internal device structure was examined by IBIC (ion beam induced current) method by using a 2 MeV He+ ion microbeam. From the IBIC spectrum and the IBIC image, the charge collected from the open space by the diffusion process was observed in addition to the charge collected from the depletion layer of the pn junction.  相似文献   

2.
A 12-stage small deposit area low pressure impactor (SDI) was used to collect size-fractionated aerosol samples during an intensive 1997 summer field campaign in northern Finland. The samples were analyzed for over 20 elements by PIXE, and some “difficult” elements such as As and Se could be quantified. The sea-salt and crustal elements had essentially a unimodal coarse size distribution with geometric mean aerodynamic diameter (GMAD) of about 4–5 μm. In one third of the samples, S showed only one mode in the fine size range, with GMAD of 0.4–0.5 μm. In the other samples, this fine S mode broke up into two modes, with GMADs of 0.3 and 0.6 μm, respectively. V, Zn, As, Se and Pb were mainly present in a single submicrometer mode, with GMAD of 0.4–0.5 μm for V and Se, and slightly larger (i.e., 0.6 μm) for the other three elements. The highest concentrations of S, V, Ni, Cu, Zn, As, Se and Pb were encountered in the SDI sample which had been collected in the period 14–16 July. During this sampling, the air masses came in from the west, but had recirculated over northern Scandinavia and passed over the Kola peninsula.  相似文献   

3.
Ion-beam-induced-charge collection (IBIC) in a nuclear microprobe has been used to characterise detectors for the measurement of particles over a median energy range (100 keV–1 MeV). Three standard detector devices have been studied: a PIPS detector with a buried (ion-implanted) junction structure, a Schottky barrier junction device and a PN-junction photodiode. A 2.0 MeV focussed helium ion beam was used to probe the active area of each device with a spatial resolution 1–2 μm, to quantify the thickness of the dead layer, the charge collection response and the reduction in charge collection efficiency induced by ion-beam damage.  相似文献   

4.
Corrosion tests were performed for T91, E911 and ODS (oxide dispersion strengthened) with surface treatment and Al-alloying by pulsed electron beam (GESA—GepulsteElektronenStrahlAnlage) in flowing lead bismuth eutectic (LBE) with an oxygen content of 10−6 wt% at 550 °C for 2000 h. The result was that the surface treatment by GESA led to a faster growing multiphase oxide layer which was very homogenous in thickness. After exposure of specimens to LBE, the average oxide layer at the surface was 14–15 μm thick for ODS, 19–20 μm for E911 and 8–22 μm for T91. No dissolution attack occurred. On the surface of the Al-alloyed specimens, thin protective alumina layers were observed at the places where FeAl was formed by the GESA process, otherwise multiphase oxide layers or corrosion attack were observed.  相似文献   

5.
In this study, ferromagnetic microstructures in highly oriented pyrolytic graphite and superparamagnetic spots in polyimide foils were created by 2.25 MeV proton microbeam irradiation and characterized using atomic and magnetic force microscopy. For this purpose, graphite samples were irradiated with cross-like patterns of 15 μm × 15 μm size using ion fluences in the range of (0.003–2.5) × 1018 cm−2. The irradiated crosses showed strong magnetic signals and a complex domain structure in the magnetic images depending on the geometrical dimensions of the crosses. Furthermore, polyimide foils were irradiated with microspots and fluences in the range of (0.016–3.1) × 1019 cm−2. Magnetic force microscopy shows very strong phase shifts in these irradiated areas.  相似文献   

6.
As part of the 1996 summer intensive of the Aerosol, RAdiation and CHemistry Experiment (ARACHNE-96), the mass size distribution of various airborne particulate elements was studied at a remote site in the Negev Desert, Israel. Aerosol collections were made with 8-stage PIXE International cascade impactors (PCIs) and 12-stage small deposit area low pressure impactors (SDIs) and the samples were analyzed by PIXE for about 20 elements. The mineral elements (Al, Si, Ca, Ti, Fe) exhibited a unimodal size distribution which peaked at about 6 μm, but the contribution of particles larger than 10 μm was clearly more pronounced during the day than during night. Sulphur and Br had a tendency to exhibit two modes in the submicrometer size range, with diameters at about 0.3 and 0.6 μm, respectively. The elements V and Ni, which are indicators of residual fuel burning, showed essentially one fine mode (at 0.3 μm) in addition to a coarse mode which represented the mineral dust contribution. Overall, good agreement was observed between the mass size distributions from the PCI and SDI devices. The PCI was superior to the SDI for studying the size distribution in the coarse size range, but the SDI was clearly superior for unravelling the various modes in the submicrometer size range.  相似文献   

7.
A nuclear mubeam is an ion beam focussed down to a spot of only a few μm in diameter. If such a beam is surrounded by equipment for elemental analysis we have the nuclear muprobe (NMP) suited for elemental analysis with μm spatial resolution and detection limits of a few ppm. The beam focus is achieved by collimation to some 10 μm and further demagnification with the help of an appropriate lens system. The need to fabricate the mechanical parts to a very high precision and to avoid slit scattering at the collimators will be demonstrated and a guide to the optimal design will be given. The different ways of realization are illustrated. Applications in different fields of science are given and the availability of NMPs throughout the world illustrated.  相似文献   

8.
Corrosion and precipitation of corrosion products at an electrode of an electro-magnetic flow meter and in a narrow channel of an electro-magnetic pump (EMP) for lead bismuth (Pb-Bi) flow was investigated by means of metallurgical analysis. The roughened surface of inlet pump core at the entrance of EMP flow channel was observed, which indicated the occurrence of the so-called corrosion/erosion. In the same time, corrosion products were precipitated on the surface of the electrode and the outlet pump core. Localized corrosion/erosion and precipitation of corrosion products were observed by means of SEM/EDX analysis for their cross sections. The surface condition was different from each other depending on the place. The precipitation products were made of double-layers, that is, an outer layer and an inner layer. The inner layer (diameter range of 0–20 μm) contained Fe in the fraction of 99wt%, and the outer layer (diameter range of 20–40 μm) contained Pb-Bi in the fraction of 10wt%. The double layer structure might be caused by difference of precipitation period. These lumps of the precipitation products could be the cause of the channel plugging.  相似文献   

9.
We have demonstrated the utility of microbeam-Rutherford BackScattering (μ-RBS) in spatially resolved studies of operational plasma effects on the interior surfaces of plasma flat panel displays manufactured by Photonics Imaging. The experiments were performed at the Sandia Nuclear microprobe using a 2.8 MeV He beam with an average beam spot size of less than 8 μm. The interior surface of the top panes of the flat panels is composed of approximately 800 nm of MgO on top of a 2000 nm thick PbO layer. μ-RBS of sample panels operated under varying conditions measured changes in the surface MgO film thickness due to plasma erosion and redeposition as accurately as ± 1.5 nm. The high accuracy in the MgO thickness measurement was achieved by inferring the MgO thickness from the shift of the Pb front edge in the RBS spectrum. An estimate for the thickness accuracy as a function of the acquired statistics is presented. The surface of the flat panels' bottom panes is also comprised of MgO on top of PbO. However, troughs 100 μm wide by 10 μm deep were partially filled with phosphor and cover the entire width of the surface. This leaves only 100 μm long sections of MgO within the trough exposed. Using μ-RBS, we were able to analyze the surface composition of these regions.  相似文献   

10.
A Si pn junction diode and a GaAs Schottky diode were prepared for studying the basic mechanism of charge collection followed by high energy charged particle incidence in order to improve the resistance against single event upset. A 2 μm wide and 20 μm long rectangular Al electrode attached to a circular Al electrode with a 50 μm diameter was made on a 2.5 μm thick epilayer (minority carrier density 2 × 1015 /cm3). Both a Schottky electrode of Al (5 μm × 110 μm) and two ohmic electrodes of AuGe/Ni (110 μm × 110 μm) were made on a 2 μm thick epilayer (7.3 × 1015 /cm3) grown on a semi insulator GaAs substrate (1 × 107 Ω cm). The internal device structure was examined by the IBIC (Ion Beam Induced Charge) method using a 2 MeV He+ ion microbeam. IBIC images clearly show an Al electrode, the SiO2, and an epilayer. These results were then used to improve the qualities of the test diodes.  相似文献   

11.
In this paper, investigations have been carried out on electron beam irradiated thermoplastic and aromatic polyurethane (PU). The changes in chemical structure after irradiation were determined using FTIR spectroscopy. This study has allowed us to highlight polymer degradation versus depth and dose by following the decrease in the NH-bond intensity. The PU oxidation was also studied by following the appearance of OH bonds. Results showed that degradation and oxidation of the PU reaches a maximum between 150 and 250 μm. These effects are quantifiable up to 500 μm. Experimental results were compared with the distribution of the energy deposition simulated by the EGS4-PRESTA code. Our experimental results are in strong accordance with the simulation.  相似文献   

12.
The reactive ion etching of PECVD silicon nitride thin films has been investigated using SF6 plasma. Effects of variations of process parameters such as pressure (50–350 mTorr), RF power (50–250 W), gas flow rate (3–130 sccm) and additions of O2 and He (0–50%) in SF6, on the PECVD silicon nitride etch rate and selectivity to the AZ 1350J photoresist were examined. An etch rate of 1 μm/min has been obtained under the condition of 150 mTorr, 100 W and 60 sccm. Experimental results also indicated a maximum etch rate at approximately 30% O2 while addition of He showed only dilution effect. A nitride/photoresist selectivity ranging from 1 to 3:1 has been obtained.  相似文献   

13.
Fatigue crack growth tests were performed on 2¼Cr–1Mo steel specimens machined from ex-service experimental breeder reactor-II (EBR-II) superheater duplex tubes. The tubes had been metallurgically-bonded with a 100 μm thick Ni layer; the specimens incorporated this bond layer. Fatigue crack growth tests were performed at room temperature in air and at 400 °C in air and humid Ar; cracks were grown at varied levels of constant ΔK. In all conditions the presence of the Ni bond layer was found to result in a net retardation of growth as the crack passed through the layer. The mechanism of retardation was identified as a disruption of crack planarity and uniformity after passing through the porous bond layer. Full crack arrest was only observed in a single test performed at near-threshold ΔK level (12 MPa√m) at 400 °C. In this case the crack tip was blunted by oxidation of the base steel at the steel–nickel interface.  相似文献   

14.
The external beam microprobe facility in Florence: Set-up and performance   总被引:1,自引:0,他引:1  
An external beam microprobe facility, based on a quadrupole doublet supplied by Oxford Microbeam Ltd, has been installed on a new beamline at the 3 MV single-ended Van de Graaff accelerator in Florence. The goal was to obtain a beam with a spot size on target of 10–20 μm and a current in the order of at least 1 nA, in order to allow PIXE, PIGE and RBS elemental analysis in air or in a helium atmosphere. The beam was extracted from the vacuum lines through a 0.1 μm thick Si3N4 window to minimise lateral straggling. The design goals have been successfully achieved; the measurements of the beam spot characteristics in vacuum as well as in air and in helium atmosphere, are here reported.  相似文献   

15.
We report experiments designed to help optimize accelerator mass spectrometry (AMS) of 26Al (in the form of Al2O3) for geochronologic and geomorphologic applications. Analysis times are long and the precision of AMS are restricted by counting statistics for 26Al, which are in turn limited by the intensity of Al beam currents. We show that ion beam currents are affected by the metal matrix in which Al2O3 is dispersed, by the matrix-to-Al2O3 mixing ratio, and for at least some matrices, such as Ag, by the depth to which the sample is packed in the AMS cathode. Typical instantaneous Al+7 currents (μA) produced by the LLNL CAMS Cs sputter ion source and measured in a Faraday cup after the accelerator are 2.26 for samples in Ag, 2.17 in Re, 2.00 in Nb, 1.92 in V and 1.73 in Mo. The AMS counting efficiency (Al ions detected per Al atom loaded in the target) for a constant analysis time (900 s) and for equimolar mixtures of Al2O3 and matrix is in the range of 6 × 10−5–9 × 10−5 in the order Ag > Re > Nb > V > Mo. Additionally, we observed a correlation between the ion detection efficiency (Al ions detected per Al atoms loaded) and the matrix work function and inverse vaporization enthalpy of the matrix and beam current. Typical currents (μA) obtained with elemental Al are 13.3 for samples in no matrix, 3.23 in V, 3.14 in Nb, 3.07 in Re, 2.85 in Mo, 1.46 in Ag. The ion detection efficiency for elemental Al correlates strongly with matrix electron affinity. Thus, our data indicate that the current practice of mixing Al2O3 with Ag is reasonable until a means is found to produce cathodes of elemental Al.  相似文献   

16.
Industrial wastes consigned to disposal sites frequently contain substantial amounts of heavy metals. We have successfully applied proton induced X-ray emission analysis (PIXE) in the conduct of heavy metal (Hg, Cd, Cr, As) toxicity studies using precision cut rabbit renal cortical slices. The large beam diameter (4000 μm) of the proton macroprobe at The University of Arizona Ion Beam Analysis facility allowed an overall concentration of the metal(s) of interest in the samples to be determined, but lacked the ability to resolve point concentrations in the tissue. The ability to locate these areas has now been made available to us with the addition of a rastering microprobe (μ-PIXE) to the facility. Studies now being conducted in our laboratory using this micro-technique include analysis of renal tissue taken from rabbits injected intraperitoneally with HgCl2, K2Cr2O7, and NaAsO2. The small beam size (3 μm) and the ability to raster this beam over areas of up to 125 μm × 125 μm has allowed regional mapping of endogenous and non-endogenous metal concentrations and revealed trends in heavy metal deposition in in vivo treated renal tissue, significantly increasing the amount of information obtained from these animal studies using PIXE alone. The combination of small beam size, high resolution, and multi-element detection makes μ-PIXE a powerful tool for investigating the impact of non-endogenous metals on the kidney.  相似文献   

17.
TiN films of 30–300 nm thickness, deposited onto stainless steel via magnetron sputtering, and 10 μm thick Ti foils were irradiated with 80–360 keV Xe+ ions at influences of φ = 1015–1017 ions/cm2. The Xe content was depth-profiled by means of 900 keV He++ Rutherford backscattering. Irradiations of films with a thickness exceeding the ion range (at 80 and 250 keV) led to saturation effects due to sputtering and outdiffusion from the near-surface region. The sputtering yields deduced at low Xe fluences were compared to calculations for mono-elemental and compound sputtering. Surface blistering was observed after 250 keV saturation implantation into Ti. For TiN layers with a thickness comparable to the ion range, precipitation of the mixing gas at the interface was observed which finally led to the destruction of the layers. The dependence of the Xe fraction accumulated in the interface is discussed in terms of thermal-spike calculations.  相似文献   

18.
Scanning transmission ion microscopy (STIM) of joint cartilage could visualise single collagen fibrils. Thus, answers to the controversial questions of their alignment could be given. However, the fibrils form three-dimensional structures that are not yet fully disclosed. STIM tomography is needed to give more detailed information. The size of the structures requires a challenging resolution of about 100 nm. The first STIM tomographic experiment has been performed at the Leipzig nanoprobe LIPSION. 360 projections of a cartilage sample (30 μm×32 μm×10 μm) were taken. The pixel resolution was 250×250 pixels for each projection. The data set was reconstructed at MARC Melbourne using the backprojection of filtered projections technique. The data show the feasibility of STIM tomography in cartilage research. However, experimental inaccuracies (rotational displacement and magnetic stray fields) have limited the resolution thus far. Improvements in the experimental set-up will lead to higher resolution.  相似文献   

19.
The effectiveness as permeation barriers of the following CVD coatings have been investigated: TiC (1 to 2 μm in thickness); a bi-layer of TiN on TiC (3 μm total thickness) and CVD A12O3 on a TiN/TiC bi-layer. The substrate materials were TZM (a Mo alloy) and 316L stainless steel in the form of discs of diameter 48 mm and thickness 0.1 or 1 mm. Permeation measurements were performed in the temperature range 515–742 K using deuterium at pressures in the range 1–50 kPa. CVD layers were shown to form reasonably effective permeation barriers. At a temperature of 673 K TiC is around 6000 times less permeable to deuterium than 316L stainless steel.  相似文献   

20.
In order to understand the formation mechanism of a crystallographic re-structuring in the periphery region of high-burnup nuclear fuel pellets, named as “rim structure”, information on the accumulation process of radiation damage and fission products (FPs), as well as high-density electronic excitation effects by FPs, are needed. In order to separate each of these processes and understand the high-density electronic excitation effects, 70–210 MeV FP ion (Xe10–14+, I7+ and Zr9+) irradiation studies on CeO2, as a simulation of fluorite ceramics of UO2, have been done at a tandem accelerator of JAEA-Tokai and the microstructure changes were determined by transmission electron microscope (TEM). Measurements of the diameter of ion tracks, which are caused by high-density electronic excitation, have clarified that the effective area of electronic excitation by high-energy fission products is around 5–7 nm  and the square of the track diameter tends to follow linear function of the electronic stopping power (Se). Prominent changes are hardly observed in the microstructure up to 400 °C. After overlapping of ion tracks, the elliptical deformation of diffraction spots is observed, but the diffraction spots are maintained at higher fluence. These results indicate that the structure of CeO2 is still crystalline and not amorphous. Under ion tracks overlapping heavily (>1 × 1015 ions/cm2), surface roughness, with characteristic size of the roughness around 1 μm, is observed and similar surface roughness has also been observed in light-water reactor (LWR) fuels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号