首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
离子渗氮AISI 420马氏体不锈钢耐蚀行为研究   总被引:4,自引:1,他引:3  
采用不同温度对AISI 420马氏体不锈钢进行离子渗氮处理.借助光学显微镜和X射线衍射(XRD)技术分析了渗氮层的微观组织结构,利用显微硬度计测试了渗氮层的硬度分布,通过电化学极化曲线测试和盐雾腐蚀试验研究了离子渗氮AISI 420不锈钢在模拟工业环境中的腐蚀行为.结果表明:AISI 420不锈钢350℃低温离子渗氮层由ε-Fe3N和N过饱和固溶体αN相组成,其化学稳定性高,加之固溶Cr元素的联合作用,明显提高了AISI 420不锈钢基材的腐蚀抗力.AISI 420钢经450℃和550℃渗氮处理,渗氮层中的αN分解成了α相和CrN,造成基体贫Cr,降低了基材的耐蚀性能.马氏体不锈钢低温离子渗氮处理不仅可以提高表面硬度,而且可以获得良好的耐蚀性能.  相似文献   

2.
王怡萱 《表面技术》2024,53(7):200-207
目的 选择M50NiL钢(高合金钢)和AISI 4140钢(低合金钢)2种合金钢,研究渗氮气压对合金钢等离子体渗氮层组织结构、渗层厚度、硬度、韧性和摩擦磨损性能的影响规律。方法 根据离子渗氮GB/T30883—2017,在0~500 Pa渗氮气压范围内选择170、250、350 Pa 3个渗氮气压进行等离子体渗氮,研究渗层微观结构和性能。结果 对于M50NiL和AISI 4140两种合金钢,350 Pa时渗层厚度均最大,170 Pa次之,250 Pa厚度最小。M50NiL钢在350 Pa渗氮和AISI 4140钢在170 Pa渗氮时,表面层具有最优的强韧性。摩擦磨损性能显示,170 Pa和350 Pa气压渗氮的摩擦磨损性能明显优于250 Pa气压渗氮,其中磨损率规律与渗氮层的韧性值测试结果吻合。结论 气压影响了氮离子的能量和分布,从而影响了渗层厚度,钢中的合金元素含量和气压共同影响表面强韧化效果,并且表面强韧化效果直接影响渗氮层的摩擦磨损性能。  相似文献   

3.
35CrMoA钢激光淬火/渗氮层中氮分布及耐蚀性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对35CrMoA钢进行激光淬火/渗氮复合处理,采用SEMM,XRD,EPMA,M352腐蚀系统研究了激光淬火/渗氮层的显微组织、物相、N元素分布及耐蚀性,并与气体渗氮层对比.结果表明,激光淬火/渗氮化合物层中ε-Fe3N含量较高,ζ-Fe2N相较低,表面氮浓度较低,渗氮层中氮分布较均匀,氮浓度降低趋势平缓,普通渗氮层表...  相似文献   

4.
电弧等离子体辅助渗氮处理Cr12MoV钢的组织结构及硬度   总被引:1,自引:0,他引:1  
采用不同温度对Crl2MoV钢进行电弧等离子体辅助渗氮处理.采用X射线衍射(XRD)分析渗氮层的相组成,采用扫描电子显微镜(SEM)及光学显微镜分别观察渗氮样品表面形貌及横截面形貌,利用显微硬度计测试渗氮层的硬度分布.结果表明:实验钢渗氮层的结构由CrN+γ'-Fe4N+ε-Fe3N的化合物层及由含氮马氏体相α-Fe (N)组成,渗氮层的厚度随处理温度的升高而增加.渗氮处理后能明显提高Cr12MoV钢基体的显微硬度.  相似文献   

5.
在氨气气氛下对C422 (22Cr12NiMoWV)钢进行两段式气体渗氮,并研究了渗氮层的显微组织结构以及渗氮后C422钢的室温及高温力学性能,评价渗氮对该钢缺口敏感性的影响。结果表明:C422钢的渗氮层具有三层结构:表层为主要由Fe3N、Fe4N和CrN构成的化合物层,中间层为致密的α-Fe(N)扩散层,内层为α-Fe(N)相扩散进入钢基体而形成的过渡层。与未渗氮试样相比,随着渗氮时间延长,有无缺口C422钢渗氮试样的室温、高温拉伸强度和伸长率单调下降,屈服强度先增大后减小。渗氮层的断裂模式为解理断裂的脆性断裂。气体渗氮导致C422钢的室温缺口敏感性增大,但对其高温缺口敏感性影响不大。  相似文献   

6.
《铸造技术》2016,(11):2358-2361
通过对渗氮工艺处理后1Cr18Ni9Ti钢的组织观察及力学性能测量,研究了1Cr18Ni9Ti钢的渗氮层组织及性能与渗氮温度的关系。研究结果表明:未经过渗氮处理的1Cr18Ni9Ti钢主要相成分是α-Fe相,在300℃温度下渗氮处理后的物相主要有α′N、γ′-Fe4N及ε-Fe3C相,其中γ′-Fe4N相的含量较少,在350℃和400℃温度下渗氮处理后的物相主要有α′N、γ′-Fe4N、ε-Fe3C及Cr N相。经过渗氮处理后,钢表面的硬度有明显提升,硬度值随着渗氮温度的降低而减小。在300℃温度下渗氮处理可以一定程度上提升1Cr18Ni9Ti钢的耐蚀性。  相似文献   

7.
采用扫描电镜、X射线衍射(XRD)、极化曲线和显微硬度等方法研究表面离子渗氮X12Cr13马氏体不锈钢的渗氮层成分、显微组织结构、硬度以及腐蚀性能。结果表明:离子渗氮马氏体不锈钢表面形成了70μm的渗氮层,渗氮层由化合物层和扩散层组成,化合物层的组成相主要为γ-Fe N和ε-Fe N。离子渗氮不锈钢经过72 h纯水浸泡后表面发生点蚀。基体内部向表层的扩散降低了钢中的固溶铬含量以及渗氮层形成的孔隙和裂纹共同降低马氏体不锈钢的耐腐蚀性。  相似文献   

8.
氧化层对渗氮动力学的影响   总被引:2,自引:0,他引:2  
以纯铁为对象,采用增重测量、X射线衍射分析和扫描电镜显微分析方法就充分预氧化对渗氮的作用进行研究。结果表明,渗氮初期,预氧化纯铁表面发生Fe3O4氧化层向ε-Fe3N相的转化;氮原子极易穿过Fe3O4氧化层渗入基体,并在氧化层之下的铁基体形成γ’氮化物;γ'氮化物呈指状延伸生长,使得纯铁渗氮时的化合物层平直界面失稳。渗氮后,与未预氧化试样相比,扣除氧化层本身氮化带来的贡献,预氧化试样的催渗增重达45%,证实较厚的Fe3O4氧化层不仅不会阻碍渗氮,反而具有明显的催渗作用,并提出了两种可能的催渗机理。  相似文献   

9.
对沉淀硬化型塑料模具钢NAK80进行了气体渗氮处理,利用XRD衍射仪、扫描电镜和显微硬度计分析了渗氮温度和渗氮时间对材料的物相组成、渗氮深度和显微硬度的影响,并对原材料和渗氮后的试样进行了盐雾腐蚀试验。研究表明,渗氮形成的扩散层由ε-Fe2-3N相与γ′-Fe4N相组成,随渗氮温度的升高,白亮层和渗氮层的厚度均持续增大;渗氮扩散层硬度最大值出现在530℃渗氮24 h的条件下,其硬度提高到原材料的1.8倍,开始腐蚀时间延长到原材料的10.7倍。  相似文献   

10.
佟伟平  陶乃镕  王镇波  吕坚  卢柯 《热处理》2007,22(2):11-14,19
通过表面机械研磨处理技术,在纯铁表面引入大量的塑性变形,导致其表层晶粒细化至纳米量级。随后的气体渗氮试验表明,纳米纯铁的渗氮温度远低于传统粗晶铁的渗氮温度(〉500℃),可降至约300℃,形成ε-Fe2—3N相的临界氮势也明显降低。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

18.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

19.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

20.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号