共查询到19条相似文献,搜索用时 93 毫秒
1.
等离子喷涂Al2O3-13%TiO2涂层的海水腐蚀磨损性能 总被引:1,自引:0,他引:1
基于等离子喷涂技术构筑了高耐磨、耐蚀的Al2O313%TiO2涂层(AT13涂层),利用Rtec磨蚀试验机研究AT13涂层在干摩擦、去离子水和人工海水介质中的摩擦磨损性能,并利用电化学工作站分析了涂层在静态腐蚀和滑动磨损中的开路电位和极化曲线的变化,探讨了AT13涂层的腐蚀磨损机理。结果表明:热喷涂AT13涂层由αAl2O3、γAl2O3、金红石型TiO2和Al2TiO5相组成,其中富Ti相呈条带状分布于富Al基体中;AT13涂层在海水工况具有较好的润滑性,与干摩擦相比,其摩擦因数减小了0.15,且具有较好的稳定性;在3种工况下,AT13涂层都具有优异的耐磨损性能,海水润滑条件下,AT13涂层具有最小的磨损率,且随载荷的增加而减小;磨损过程加重了海水对涂层的腐蚀,但影响较小。 相似文献
2.
针对Al2O3陶瓷涂层结合强度低、孔隙率高的实际,选择NiAl金属间化合物和金属铜粉作为过渡材料,利用等离子喷涂制备Al2O3梯度陶瓷涂层,并对梯度涂层进行组织形貌观察,测试结合强度和孔隙率.结果表明,梯度涂层的组织表现出宏观的不均匀性和微观连续性的分布特征,NiAl和Cu是金属基体与Al2O3涂层之间过渡层的理想材料,可以有效地提高涂层的结合强度,而Cu-Al2O3梯度涂层又比NiAl-Al2O3梯度涂层结合强度高;梯度涂层的孔隙率远低于双涂层的孔隙率,在Cu-Al2O3梯度涂层中随Al2O3含量的增加,涂层的孔隙率降低,而且孔隙率低于NiAl-Al2O3梯度涂层. 相似文献
3.
目的 探究掺杂不同质量分数Y2O3对Al2O3-Y2O3复合涂层微观结构及其力学性能的影响。方法 采用大气等离子喷涂制备Al2O3涂层,以及Y2O3质量分数分别为10%、20%、30%、40%的Al2O3-Y2O3复合涂层。利用SEM、EDS对粉末以及不同涂层的形貌、组织结构、元素分布进行分析。使用XRD表征粉末和涂层的物相。使用显微硬度仪、纳米压痕测试仪和电子万能试验机对涂层的显微硬度、弹性模量以及断裂韧性等力学性能进行测试分析。结果 Al2O3喷涂粉末的物相由α-Al2O3组成,而喷涂得到的Al2O3涂层则由α-Al2O 相似文献
4.
5.
利用空气等离子孤喷涂(APS)技术制备Al2O3-3%TiO2复合粉末涂层.采用金相分析方法研究喷涂工艺参数对涂层组织和孔隙率的影响,从而确定合理的喷涂工艺参数. 相似文献
6.
为提高舰船关重部件的耐磨损、抗腐蚀性能,开展了大气等离子喷涂氧化铝复合涂层技术研究。在45钢表面制备Al2O3-40%TiO2陶瓷涂层,通过扫描电子显微镜、显微硬度计、电子天平、摩擦磨损试验机等仪器设备,分析该涂层的显微结构,测其显微硬度、孔隙率等性能,研究其在干摩擦条件下的摩擦磨损性能。结果表明:涂层均匀致密,孔隙率为1.86%,涂层与粘结层之间有明显的倒钩镶嵌结构;Al2O3-40%TiO2涂层的平均硬度为687.2 HV0.1,同时粘结层起到了硬度梯度作用;在干摩擦条件下,45钢主要为严重的黏着磨损,而涂层的磨损主要以层状剥离为主,伴随着少量磨粒磨损,且磨损量低于45钢。在某舰艇主机正时齿轮密封失效部位表面使用Al2O3-40%TiO2涂层,大大提高了正时齿轮的使用寿命,为舰船关重部件的维修与再制造提供了技术支持和理论参考。 相似文献
7.
用等离子喷涂工艺在Q235钢基体上制备Cr2O3陶瓷涂层,并采用磷酸铝和环氧树脂对其进行封孔处理。利用图像分析法和电化学方法对封孔前后涂层的孔隙率进行了测试,采用弱极化技术和电化学阻抗谱技术对封孔前后涂层的耐蚀性能进行了研究。结果表明,封孔处理提高了涂层的耐蚀性能,环氧树脂封孔涂层的耐蚀性能更优异;陶瓷涂层在腐蚀介质中耐蚀性能主要取决于涂层的孔隙率。 相似文献
8.
超音速等离子喷涂工艺参数对 Cr2O3涂层硬度的影响 总被引:1,自引:2,他引:1
目的研究影响超音速等离子喷涂Cr2O3涂层硬度的主要因素,制备出高硬度涂层。方法首先采用单变量法研究超音速等离子生成气体压力(空气压力)和喷涂距离对涂层显微结构的影响,然后采用正交试验研究喷涂电流、空气压力、喷涂距离对Cr2O3涂层硬度的影响。结果工艺参数对Cr2O3涂层硬度影响的主次顺序为:空气压力>喷涂电流>喷涂距离。结论获得高硬度涂层的最佳工艺参数组合为:空气压力0.4 MPa,喷涂电流270 A,喷涂距离200 mm。在该工艺条件下获得的涂层致密、均匀,孔隙率小。 相似文献
9.
10.
以常规和纳米团聚体Al2O3-13TiO2(ω/%,下同)复合陶瓷粉末为原料,采用等离子喷涂工艺在TiAl合金表面制备常规和纳米结构陶瓷涂层.用扫描电镜(SEM)和X射线衍射(XRD)仪分析粉末和涂层形貌、微观结构及相组成,同时对纳米结构涂层的微观组织形成机制进行了讨论.结果表明:常规复合陶瓷涂层呈典型的等离子喷涂层状堆积特征;纳米结构复合陶瓷涂层由部分熔化区以及与常规等离子喷涂类似的片层状完全熔化区组成.根据组织结构的不同,部分熔化区又分为亚微米A12O3粒子镶嵌在TiO2基质相的三维网状或骨骼状结构的液相烧结区和经过一定长大但仍保持在纳米尺度的残留纳米粒子的固相烧结区,不同的部分熔化组织源于复合陶瓷粉末中A12O3与TiO2之间的熔点差异.由于等离子喷涂过程中涂层沉积时的快速凝固作用,不管是常规还是纳米涂层都以亚稳相γ-A12O3为主. 相似文献
11.
目的研究等离子喷涂纳米Al2O3-13%TiO2的特征喷涂参数(CPSP)对涂层微观结构及耐磨性能的影响,探索更合理的等离子喷涂工艺参数。方法采用等离子喷涂,在Q235钢表面制备过渡层为NiCrAl、陶瓷层为纳米Al2O3-13%TiO2的涂层系统。对涂层试样进行高温和常温磨损性能测试,并对比分析喷涂粉末、涂层的微观结构和相组成。结果纳米涂层为微观双模结构,由部分熔化区和完全熔化区组成,存在裂纹、孔隙等缺陷,其主要物相为α-Al2O3,γ-Al2O3和rutile-TiO2。纳米涂层磨损失效的主要原因是内部板条的分层剥落和涂层表面材料的塑性变形切削。结论随着CPSP的增大,纳米涂层的耐磨性能增强,且高温磨损性能较室温磨损性能为差。纳米Al2O3-13%TiO2涂层微观结构中部分熔化区结构和纳米晶粒的存在显著提高了涂层的耐磨性。 相似文献
12.
激光重熔纳米Al2O3-13%TiO2陶瓷涂层组织及性能 总被引:2,自引:0,他引:2
为了进一步提高等离子喷涂纳米Al2O3-13%TiO2(质量分数, 下同)复合陶瓷涂层的性能,在γ-TiAl基体材料表面采用激光重熔工艺对涂层进行处理,研究了激光重熔对涂层微观组织和性能的影响.用扫描电镜(SEM)和显微硬度计分析了涂层形貌、微观结构和显微硬度,同时对涂层的磨损特性进行了考察.结果表明,等离子喷涂纳米陶瓷涂层由纳米颗粒完全熔化区和部分熔化区两部分组成,仍然具有等离子喷涂态的典型层状结构.经过激光重熔后,形成了致密细小的等轴晶重熔区、烧结区和残余等离子喷涂区,由于激光快速加热和快速冷却加工特点,在重熔区仍保留了部分来源于原等离子喷涂部分熔化区的残留纳米粒子.与常规等离子喷涂陶瓷涂层相比,纳米结构涂层可在一定程度上提高其硬度和耐磨性,经过激光重熔后其硬度和耐磨性进一步提高. 相似文献
13.
将商用纳米Al_2O_3与TiO_2粉末混合制浆,通过喷雾造粒技术重构成大颗粒纳米Al_2O_3-13%T102团聚粉体,然后采用不同加热温度进行烧结,制备用于热喷涂的纳米喂料。采用等离子喷涂技术沉积形成纳米涂层。利用XRD和SEM对纳米粉末和涂层的形貌、显微结构和晶相进行表征。结果表明,在烧结过程中纳米氧化铝没有发生相变,而纳米氧化钛则由锐钛矿相转变为金红石相;在等离子喷涂过程中,部分a—Al_2O_3发生熔化转变为y—Al_2O_3,且转变量与喷涂工艺参数有关;而TiO_2相只在较低喷涂工艺参数下存在衍射峰,在较高喷涂工艺参数下则以z—A1203"Ti02固溶体存在;涂层在热处理过程中会发生y.A1203向a—A1203的转变,且有Ti02相析出。 相似文献
14.
Properties of Fe-based Amorphous Alloy Coatings with Al2O3-13% TiO2 Deposited by Plasma Spraying 总被引:1,自引:0,他引:1
采用大气等离子喷涂技术成功在Fe普碳钢基材上制备了含有不同质量分数Al2O3-13%Ti O2颗粒的Fe基非晶复合涂层,其中Fe基非晶相成分为Fe71Cr5B4Si4Ni3Mo3W10(wt%),并对涂层的微观结构、显微硬度和耐蚀性能进行了研究。在Fe基非晶相与Al2O3-13%Ti O2陶瓷相界面观察到Fe、Ti、W、Al和O元素的互扩散现象,这种微区冶金结合减少了由于第二相的加入导致的涂层孔隙并增加了相间的结合强度。当加入的Al2O3-13%Ti O2质量分数≥16 wt%时,涂层的显微硬度升高≥20%;复合非晶涂层在10 wt%Na OH溶液中的耐腐蚀性能高于1Cr18Ni9Ti不锈钢。 相似文献
15.
采用大气等离子喷涂方法制备了纳米结构Al2O3—13%TiO2(质量分数,下同)涂层,进行了SRV滑动磨损试验,通过扫描电镜对涂层的断口显微组织及磨损表面形貌进行了观察,并测定了涂层的显微硬度。结果表明,该纳米涂层具有独特的显微组织结构特征,层片间具有冶金结合特征的界面较多,界面结合得到明显改善,其显微硬度明显高于微米涂层,具有优良的耐磨性能,其磨损面积仅为常规微米涂层的1/5,界面结合改善是耐磨性提高的主要原因。 相似文献
16.
目的研究等离子喷涂Al_2O_3-3%TiO_2涂层的抗低温冲击性能和外部载荷下的绝缘性能等综合性能,探讨大气等离子喷涂技术作为核聚变反应堆磁体支撑结构绝缘涂层制备方法的可行性。方法采用大气等离子喷涂技术在喷砂处理的A286基体上制备Al_2O_3-3%TiO_2涂层并进行封孔处理,利用XRD、SEM等手段对涂层的微观结构和常规性能进行表征,重点关注了涂层的低温热冲击性能和加载绝缘性能。结果喷涂粉末充分熔融及铺展而沉积为典型的层叠状结构,涂层的结合强度达30 MPa,孔隙率可控制在5%以内。均匀涂刷在涂层表面的硅树脂封孔剂有利于填充涂层孔隙和微裂纹,封孔剂在涂层内部的渗透深度可达到大约100μm。从室温水浴到液氮进行10个循环的热冲击试验后,涂层未发现裂纹和剥落,且热冲击对绝缘性能没有显著影响。250 MPa压缩载荷下,涂层的表面电阻率明显降低,但仍高于30 MΩ/sqr。结论 Al_2O_3-3%TiO_2涂层可作为高载荷和低温环境下使用的潜在绝缘材料,而大气等离子喷涂将成为制备核聚变反应堆磁体支撑结构关键部件绝缘涂层的重要选择。 相似文献
17.
目的 通过优化等离子喷涂工艺参数,提高铝合金表面等离子喷涂Al2O3-3%TiO2复合陶瓷涂层的结合强度和涂层表截面硬度。方法 用正交试验法,对影响喷涂涂层结合强度和硬度的4个关键喷涂参数进行优化,分别得到喷涂粘结底层Ni-5Al和工作表层Al2O3-3%TiO2的最佳优化参数。结果 通过正交试验确定影响Ni-5Al涂层综合指标的因素由主到次是喷涂电流、喷涂距离、辅气流量、主气流量,最优水平数为2、3、2、1;影响Al2O3-3%TiO2涂层综合指标的因素由主到次是喷距、辅气流量、电流、主气流量,最优水平数为2、3、2、1。Ni-5Al涂层的最佳喷涂工艺参数为:喷涂距离120 mm,喷涂电流520 A,主气流量42 L/min,辅气流量7.5 L/min。Al2O3-3%TiO2复合涂层最佳喷涂工艺参数为:喷涂距离90 mm,喷涂电流530 A,主气流量46 L/min,辅气流量7.8 L/min。最佳工艺下制备的Ni-5Al底层与基体的结合强度为25.2 MPa,Al2O3-3%TiO2复合涂层与Ni-5Al底层的结合强度为17.8 MPa,且其截面硬度在1000HV0.5以上。结论 对喷涂工艺参数进行优化可以得到质量高且稳定的Al2O3-3%TiO2复合喷涂涂层,与非最佳工艺参数喷涂涂层相比,各指标均有较大提高。 相似文献
18.
目的 研究温度对钛合金表面Al2O3-40%TiO2陶瓷涂层摩擦磨损性能的影响,探讨涂层在高温下的摩擦磨损机理。方法 采用大气等离子喷涂技术(APS)在TC4钛合金表面制备Al2O3-40%TiO2(AT40)陶瓷涂层。采用扫描电子显微镜(SEM)和能量分散谱仪(EDS),对AT40陶瓷涂层中的微观形貌和物相进行定性分析。借助维氏显微硬度计,研究 AT40陶瓷涂层在常温下的截面显微硬度分布规律,以及高温下的显微硬度。采用多功能摩擦磨损试验机,测试AT40陶瓷涂层在200、350、500 ℃下的摩擦磨损性能,并进行原位在线自动3D形貌表征。结果 AT40陶瓷涂层呈典型的热喷涂层状结构,各相分布均匀,涂层结构致密,平均显微硬度相较于TC4钛合金基材提高了81%。AT40陶瓷涂层在200、350、500 ℃下的高温硬度分别为513HV0.3、463HV0.3、448HV0.3。在200、350 ℃时,AT40陶瓷涂层的平均摩擦系数分别为0.18±0.02和0.38±0.03,磨损率分别为(7.8±0.01)×10–5 mm3/(N.m)和(37.2±0.01)×10–5 mm3/(N.m),涂层具有优异的抗高温摩擦磨损性能。500 ℃时,涂层的平均摩擦系数和磨损率分别为0.77±0.02和(134.4±0.01)×10–5 mm3/(N.m),磨痕深度和磨损体积大幅增加,耐磨性能降低。结论 AT40陶瓷涂层在200 ℃和350 ℃的磨损机制主要为微区脆性断裂,在500 ℃时的磨损机制表现为裂纹扩展引起的分层剥落和轻微磨料磨损。 相似文献