首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The N-acylethanolamine phospholipids (NAPE) are precursors for N-acylethanolamines (NAE), including anandamide (20∶4-NAE), which is a ligand for the cannabinoid receptors. Previously, NAPE were believed to be found only in injured tissue, e.g., after neurodegenerative insults. Neuronal injury may occur in response to seizure activity. Therefore, we investigated the effect of pentylenetetrazol (PTZ)-induced seizures in PTZ-kindled mice on the level of NAPE in the brain. Male NMRI mice were kindled with PTZ injections 3 times/wk, thereby developing clonic seizures in response to PTZ. Mice were killed within 30 min after the clonic seizure on the test day (12th injection) and the brains were collected. Eight species of NAPE were analyzed as the glycerophospho-N-acylethanolamines by high-performance liquid chromatography-coupled electrospray ionization mass spectrometry. No effect of the PTZ kindling on the NAPE levels in murine brains was observed. Total NAPE in control mice cortex (n=4) was 16.4±3.0 μmol/g wet weight of which 20∶4-NAPE accounted for 3.6 mol%, and the major species was 16∶0-NAPE, accounting for 52.1 mol%. Determination of the activity of NAPE-hydrolyzing phospholipase D and of N-acyltransferase in brain membrane preparations from adult and 3-d-old mice revealed an enzyme pattern in the adult mice that was favorable for NAE accumulation as opposed to NAPE accumulation. Thus, there was no difference in NAPE levels; at present, however, this does not exclude that NAE may accumulate during seizure.  相似文献   

2.
Diet and fatty acid metabolism interact in yet unknown ways to modulate membrane fatty acid composition and certain cellular functions. For example, dietary precursors or metabolic products of n-3 fatty acid metabolism differ in their ability to modify specific membrane components. In the present study, the effect of dietary 22∶6n−3 or its metabolic precursor, 18∶3n−3, on the selective accumulation of 22∶6n−3 by heart was investigated. The mass and fatty acid compositions of individual phospholipids (PL) in heart and liver were quantified in mice fed either 22∶6n−3 (from crocodile oil) or 18∶3n−3 (from soybean oil) for 13 wk. This study was conducted to determine if the selective accumulation of 22∶6n−3 in heart was due to the incorporation of 22∶6n−3 into cardiolipin (CL), a PL most prevalent in heart and known to accumulate 22∶6n−3. Although heart was significantly enriched with 22∶6n−3 relative to liver, the accumulation of 22∶6n−3 by CL in heart could not quantitatively account for this difference. CL from heart did accumulate 22∶6n−3, but only in mice fed preformed 22∶6n−3. Diets rich in non-22∶6n−3 fatty acids result in a fatty acid composition of phosphatidylcholine (PC) in heart that is unusually enriched with 22∶6n−3. In this study, the mass of PC in heart was positively correlated with the enrichment of 22∶6n−3 into PC. The increased mass of PC was coincident with a decrease in the mass of phosphatidylethanolamine, suggesting that 22∶6n−3 induced PC synthesis by increasing phosphatidylethanolamine-N-methyltransferase activity in the heart.  相似文献   

3.
Long-chain N-acylethanolamines (NAE), including the endocannabinoid, anandamide, accumulate in mammalian tissues under a variety of pathological conditions. They have also been shown to inhibit the growth of various cancer cell lines in vitro. Here, we report the presence, in widely differing amounts (3.88–254.46 pmol/μmol lipid P), of NAE and their precursor phospholipids in various human tumors and some adjacent unaffected tissue. Anandamide ranged from 1.5 to 48% of total NAE, and incubation of tissue homogenates suggested possible NAE biosynthesis by both the established transacylation-phosphodiesterase pathway via N-acyl PE and by direct N-acylation of ethanolamine.  相似文献   

4.
Female pigs were fed from three wk of age and up to two years a diet containing partially hydrogenated fish oil (PHFO, 28%trans monoenoic fatty acids), partially hydrogenated soybean oils (PHSBO, 36%trans fatty acids) or lard. No consistent differences were found between PHFO and PHSBO with regard to incorporation oftrans fatty acids in organ lipids, buttrans incorporations were highly organ-specific. Notrans fatty acids were detected in brain phosphatidylethanolamine (PE). The incorporation of monoenoictrans isomers, as a percentage of totalcis + trans, in other organs was highest in subcutaneous adipose tissue and liver mitochondria PE, followed by blood lipids with the lowest level in heart PE. The percentage oftrans isomers compared with that of dietary lipids was consistently lower for 20∶1, compared with 18∶1 in organs from PHFO-fed pigs. The only effect of dietarytrans fatty acids on the fatty acid pattern of brain PE was an increased level of 22∶5n−6. Heart PE and total serum lipids of pigs fed the hydrogenated fats contained higher levels of 18∶2n−6, and these lipids of the PHFO-fed group also contained slightly elevated amounts of 20∶3n−6, 18∶3n−3 and 20∶5n−3. Liver mitochondria PE of the PHFO group also contained higher levels of 20∶3n−6 and 22∶5n−6. Dietarytrans fatty acids caused a consistent decrease of saturated fatty acids compensated by increased levels of monoenes. Thus, it may be concluded that dietary long-chaintrans fatty acids in PHFO behaved similarly metabolically to 18∶1-trans in PHSBO in pigs, without noticeable influence on brain PE composition and with moderate to slight effects on the fatty acid profile of the other organs.  相似文献   

5.
In the brain, polyunsaturated fatty acids (PUFA), especially arachidonic acid and docosahexaenoic acid (DHA), are required for regulating membrane fluidity, neuronal survival and signal transduction. Since the brain cannot synthesize n-6 and n-3 PUFA de novo, they must be supplied from the blood. However, the methods of PUFA entry into the brain are not agreed upon. This study tested the necessity of CD36, a candidate transporter of unesterified fatty acids, for maintaining brain PUFA concentrations by comparing brain PUFA concentrations in CD36−/− mice to their wild-type littermates. Because CD36−/− mice have been reported to have impaired learning ability, the PUFA concentrations in different brain regions (cortex, hippocampus, cerebellum and the remainder of brain) were investigated. At 9 weeks of age, the brain was separated into the four regions and fatty acid concentrations in total and phospholipid classes of these brain regions were analyzed using thin layer and gas chromatography. There were no statistical differences in arachidonic acid or DHA concentrations in the different brain regions between wild-type and CD36−/− mice, in total or phospholipid fractions. Concentrations of monounsaturated fatty acids were decreased in several phospholipid fractions in CD36−/− mice. These findings suggest that CD36 is not necessary for maintaining brain PUFA concentrations and that other mechanisms must exist.  相似文献   

6.
M. W. Spence 《Lipids》1971,6(11):831-835
Rats were maintained 120–140 days on a normal diet (group 1) or one deficient in fatty acids (group 2). Isomer composition was determined of monoenoic fatty acids (16∶1, 18∶1) isolated from total lipids of heart, kidney, lung, brain and lumbar fat, and from separated neutral lipids and phospholipids of heart and kidney. Group 1: The number of major isomers of C16∶1 and C18∶1 was similar in all tissues but their proportions varied in different tissues and types of lipid. Group 2: The proportions of 16∶1(n−7) increased and of other 16∶1 isomers decreased in all tissues; 18∶1(n−9) was increased at the expense of (n−7) in heart, to a lesser extent in kidney, and was little changed in lung, lumbar fat, or brain. The decrease in proportion of 18∶1(n−7) was greatest in heart-muscle phospholipids. C20∶3 comprised 95% (n−9) and 5% (n−7) in heart and kidney lipids. The changes in group 2 probably represent the body’s attempts to maintain lipids with the physical and chemical properties necessary to normal biological function. Nomenclature of fatty acids as in IUPAC-IUB Commission on Biochemical Nomenclature, “The nomenclature of lipids,” J. Biol. Chem. 242:4845–49 (1967).  相似文献   

7.
The effects of elevated atmospheric CO2 concentration on N2O fluxes, instant CO2 exchange and the biomass production of timothy (Phleum pratense) were studied in the laboratory. Three sets of 12 farmed sandy soil mesocosms sown with Phleum pratense were fertilised with a commercial fertiliser in order to add 5, 10 and 15 g N m−2, and equally distributed in four thermo-controlled greenhouses. In two of the greenhouses, the CO2 concentration was kept at atmospheric concentration (360 μmol mol−1), and in the other two at double the ambient concentration (720 μmol mol−1). Forage was harvested and the plants fertilised twice during the N2O measurements. This was followed by an extra fertilisation and harvesting. After the third harvest, the growth of P. pratense was maintained at a height of 18 cm for measurements of instant CO2 exchange, performed in two growth chambers. N2O exchange was monitored using a closed chamber technique and a gas chromatograph. Instant CO2 exchange was monitored using an infrared gas analyser. N2O was emitted from the soil in the low, moderate and high N treatments at both CO2 concentrations when the moisture content was low, the N2O probably being mainly derived from nitrification. The highest flux (3303 μg N2O m−2 h−1) occurred in the highest N treatment before thinning the stand of P. pratense under elevated CO2 concentration. P. pratense was acclimated to the elevated CO2 concentration: the NEE and P G of the elevated growth of P. pratense decreased, in contrast to the fluxes of the normal ambient growth, when measured at the changed CO2 concentration (ambient). The rate of respiration (R TOT) in the agroecosystem did not increase due to the elevated CO2 concentration, but instead the results indicated decreased R TOT (on average 2049 and 1808 mg CO2 m−2 h−1 at ambient and elevated CO2 concentration, respectively) when there was an abundant N supply. This infers the possibility of enhanced C accumulation in agriculture mineral soil via P. pratense under an increased atmospheric CO2 supply.  相似文献   

8.
Marine fish have an absolute dietary requirement for C20 and C22 highly unsaturated fatty acids. Previous studies using cultured cell lines indicated that underlying this requirement in marine fish was either a deficiency in fatty acyl Δ5 desaturase or C18–20 elongase activity. Recent research in turbot cells found low C18–20 elongase but high Δ5 desaturase activity. In the present study, the fatty acid desaturase/elongase pathway was investigated in a cell line (SAF-1) from another carnivorous marine fish, sea bream. The metabolic conversions of a range of radiolabeled polyunsaturated fatty acids that comprised the direct substrates for Δ6 desaturase ([1-14C]18∶2n−6 and [1-14C]18∶3n−3), C18–20 elongase ([U-14C]18∶4n−3), Δ5 desaturase ([1-14C]20∶3n−6 and [1-14C]20∶5n−3), and C20–22 elongase ([1-14C]20∶4n−6 and [1-14C]20∶5n−3) were utilized. The results showed that fatty acyl Δ6 desaturase in SAF-1 cells was highly active and that C18–20 elongase and C20–22 elongase activities were substantial. A deficiency in the desaturation/elongation pathway was clearly identified at the level of the fatty acyl Δ5 desaturase, which was very low, particularly with 20∶4n−3 as substrate. In comparison, the apparent activities of Δ6 desaturase, C18–20 elongase, and C20–22 elongase were approximately 94-, 27-, and 16-fold greater than that for Δ5 desaturase toward their respective n−3 polyunsaturated fatty acid substrates. The evidence obtained in the SAF-1 cell line is consistent with the dietary requirement for C20 and C22 highly unsaturated fatty acids in the marine fish the sea bream, being primarily due to a deficiency in fatty acid Δ5 desaturase activity.  相似文献   

9.
Ves-Losada A  Maté SM  Brenner RR 《Lipids》2001,36(3):273-282
Liver nuclear incorporation of stearic (18∶0), linoleic (18∶2n−6), and arachidonic (20∶4n−6) acids was studied by incubation in vitro of the [1-14C] fatty acids with nuclei, with or without the cytosol fraction at different times. The [1-14C] fatty acids were incorporated into the nuclei as free fatty acids in the following order: 18∶0>20∶4n−6≫18∶2n−6, and esterified into nuclear lipids by an acyl-CoA pathway. All [1-14C] fatty acids were esterified mainly to phospholipids and triacylglycerols and in a minor proportion to diacylglycerols. Only [1-14C] 18∶2n−6-CoA was incorporated into cholesterol esters. The incorporation was not modified by cytosol addition. The incorporation of 20∶4n−6 into nuclear phosphatidylcholine (PC) pools was also studied by incubation of liver nuclei in vitro with [1-14C]20∶4n−6-CoA, and nuclear labeled PC molecular species were determined. From the 15 PC nuclear molecular species determined, five were labeled with [1-14C]20∶4n−6-CoA: 18∶0–20∶4, 16∶0–20∶4, 18∶1–20∶4, 18∶2–20∶4, and 20∶4–20∶4. The highest specific radioactivity was found in 20∶4–20∶4 PC, which is a minor species. In conclusion, liver cell nuclei possess the necessary enzymes to incorporate exogenous saturated and unsaturated fatty acids into lipids by an acyl-CoA pathway, showing specificity for each fatty acid. Liver cell nuclei also utilize exogenous 20∶4n−6-CoA to synthesize the major molecular species of PC with 20∶4n−6 at the sn-2 position. However, the most actively synthesized is 20∶4–20∶4 PC, which is a quantitatively minor component. The labeling pattern of 20∶4–20∶4 PC would indicate that this molecular species is synthesized mainly by the de novo pathway.  相似文献   

10.
Uncommoncis andtrans fatty acids can be desaturated and elongated to produce unusual C18 and C20 polyunsaturated fatty acids in animal tissues. In the present study we examined the formation of such metabolites derived fromcis andtrans isomers of oleic and linoleic acids of partially hydrogenated vegetable oil origin in rats. For two months, aduut male rats were fed a partially hydrogenated canola oil diet containing moderately high levels oftrans fatty acids (9.6 energy%) and an adequate level of linoleic acid (1.46 energy%). Analysis of the phospholipid (PL) fatty acids of liver, heart, serum and brain showed no new C18 polyunsaturated fatty acids, except for those uncommon 18∶2 isomers originating from the diet. However, minor levels (each <0.3% PL fatty acids) of six unusual C20 polyunsaturated fatty acids were detected in the tissues examined, except in brain PL. Identification of their structures indicated that the dietary 9c,13t−18∶2 isomer, which is the majortrans polyunsaturated fatty acid in partially hydrogenated vegetable oils, was desaturated and elongated to 5c,8c,11c,15t−20∶4, possibly by the same pathway that is operative for linoleic acid. Furthermore, dietary 12c−18∶1 was converted to 8c,14c−20∶2 and 5c,8c,14c−20∶3; dietary 9c,12t−18∶2 metabolized to 11c,14t−20∶2 and 5c,8c,11c14t−20∶4, and dietary 9t,12c to 11t,14c−20∶2. These results suggested that of all the possible isomers of oleic and linoleic acids in partially hydrogenated vegetable oils, 12c−18∶1, 9c,13t−18∶2, 9c,12t−18∶2 and 9t,12c−18∶2 are the preferred substrates for desaturation and elongation in rats. However, their conversions to C20 metabolites were not as efficient as that of oleic or linoleic acids.  相似文献   

11.
The differential uptake and targeting of intravenously infused [1-14C]palmitic ([1-14C] 16∶0) and [1-14C]arachidonic ([1-14C]20∶4n−6) acids into heart lipid pools were determined in awake adult male rats. The fatty acid tracers were infused (170 μCi/kg) through the femoral vein at a constant rate of 0.4 mL/min over 5 min. At 10 min postinfusion, the rats were killed using pentobarbital. The hearts were rapidly removed, washed free of exogenous blood, and frozen in dry ice. Arterial blood was withdrawn over the course of the experiment to determine plasma radiotracer levels. Lipids were extracted from heart tissue using a two-phase system, and total radioactivity was measured in the nonvolatile aqueous and organic fractions. Both fatty acid tracers had similar plasma curves, but were differentially distributed into heart lipid compartments. The extent of [1-14C]20∶4n−6 esterification into heart phospholipids, primarily choline glycerophospholipids, was elevated 3.5-fold compared to [1-14C]16∶0. The unilateral incorporation coefficient, k *, which represents tissue radioactivity divided by the integrated plasma radioactivity for heart phospholipid, was sevenfold greater for [1-14C]20∶4n−6 than for [1-14C]16∶0. In contrast, [1-14C]16∶0 was esterified mainly into heart neutral lipids, primarily triacylglycerols (TG), and was also found in the nonvolatile aqueous compartment. Thus, in rat heart, [1-14C]20∶4n−6 was primarily targeted for esterification into phospholipids, while [1-14C]16∶0 was targeted for esterification into TG or metabolized into nonvolatile aqueous components.  相似文献   

12.
The phospholipid fatty acids from the spongeSpheciospongia cuspidifera were studied revealing the presence of the rare 10-octadecenoic acid (10−18∶1) and a new 2-methoxyhexadecenoic acid. The phospholipid fatty acids fromThalysias juniperina were also studied revealing the presence of the hitherto unreported 18-hexacosenoic acid (18−26∶1). These results tend to indicate that the biosynthetic pathway from 10−18∶1 to 18−26∶1 may be operative in nature. The phospholipid mixture from the sponges was also analyzed by31P-NMR and shown to mainly consist of phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol. Phosphatidylcholine was not found in the sponges analyzed in this work.  相似文献   

13.
Uptake of fatty acids by the developing rat brain   总被引:1,自引:0,他引:1  
Polyunsaturated fatty acids are avidly taken up by the developing rat brain. To explore the specificity of this process, [1-14C]labeled 16∶0, 18∶2n−6, 18∶3n−3, and 22∶6n−3 each were co-injected with [3H]18∶1n−9 into the jugular vein of two-wk-old functionally hepatectomized and shamoperated control rats. The radioactivities present in the brain, liver and serum were assessed 30 min after injection. Uptake of labeled fatty acids into brain lipids steadily increased with increasing degree of unsaturation, with more than twice as much uptake of 22∶6n−3 compared to 16∶0. Phosphatidylcholine was the principal radioactive species in the brain except for animals injected with [1-14C]22∶6n−3, in which more of the label was incorporated into phosphatidylethanolamine. Determination of watersoluble oxidation products in the brain and serum revealed that the greater uptake of the more unsatrated fatty acids did not result from differences in rates of degradation.  相似文献   

14.
Meadowfoam oil is unusual because over 95% of the fatty acids are 20- and 22-carbon aliphatic acids withcis double bonds located principally at the 5- and/or 13-position. Since little information is available on the metabolism of the 5c−20∶1 and 5c,13c−22∶2 fatty acids, an exploratory study in mice was conducted to investigate the metabolism of purified samples of the free fatty acids isolated from meadowfoam oil, and to determine the effect of meadowfoam oil on weight gain and tissue lipid composition. Mice fed diets containing 5% by wt of the purified 5c−20∶1 or 5c,13c−22∶2 for 6 days exhibited no apparent physiological problems. Total liver lipids from mice fed the purified fatty acid diets contained mean values of 2.0% 5c−20∶1 and 2.1% 5c,13c−22∶2; total heart lipids contained 1.7% 5c−20∶1 and 10.7% 5c,13c−22∶2. Liver total phospholipids from mice fed a 5% meadowfoam oil diet for 19 wk contained 1.4% 5c−20∶1 and 1.9% 5c,13c−22∶2. There was no evidence of desaturation, elongation or retroconversion. Weight gain for mice fed the meadowfoam oil diet for 19 wk was similar to mice fed corn oil, and was higher than for mice fed hydrogenated cottonseed oil. Considering the high 5c−20∶1 and 5c,13c−22∶2 content of the diets, the percentages of these fatty acids in mouse tissue lipids from both the short- and long-term studies were low. Weight gain was surprisingly good since the meadowfoam oil diet was essential fatty acid-deficient. Results of this initial investigation suggest that the 5c−20∶1 and 5c,13c−22∶2 fatty acids were utilized primarily for energy. In the short-term study, these fatty acids did not produce toxic effects or cause metabolic problems. The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

15.
Tocher DR  Bell JG  Dick JR  Crampton VO 《Lipids》2003,38(7):723-732
Fatty acyl desaturase activities, involved in the conversion of the C18 EFA 18∶2n−6 and 18∶3n−3 to the highly unsaturated fatty acids (HUFA) 20∶4n−6, 20∶5n−3, and 22∶6n−3, are known to be under nutritional regulation. Specifically, the activity of the desaturation/elongation pathway is depressed when animals, including fish, are fed fish oils rich in n−3 HUFA compared to animals fed, vegetable oils rich in C18 FFA. The primary aims of the present study were (i) to establish the relative importance of product inhibition (n−3 HUFA) vs. increased substrate concentration (C18 EFA) and (ii) to determine whether 18∶2n−6 and 18∶3n−3 differ in their effects on the hepatic fatty acyl desaturation/elongation pathway in Atlantic salmon (Salmo salar). Smolts were fed 10 experimental diets containing blends of two vegetable oils, linseed (IO), and rapeseed oil (RO), and fish oil (FO) in a triangular mixture design for 50 wk. Fish were sampled after 32 and 50 wk, lipid and FA composition of liver determined, fatty acyl desaturation/elongation activity estimated in hepatocytes using [1-14C]18∶3n−3 as substrate, and the data subjected to regression analyses. Dietary 18∶2n−6 was positively correlated, and n−3 HUFA negatively correlated, with lipid content of liver. Dietary 20∶5n−3 and 22∶6n−3 were positively correlated with liver FA with a slope greater than unity suggesting relative retention and deposition of these HUFA. In contrast, dietary 18∶2n−6 and 18∶3n−3 were positively correlated with liver FA with a slope of less than unity suggesting metabolism via β-oxidation and/or desaturation/elongation. Consistent with this, fatty acyl desaturation/elongation in hepatocytes was significantly increased by feeding diets containing vegetable oils. Dietary 20∶5n−3 and 22∶6n−3 levels were negatively correlated with hepatocyte fatty acyl desaturation. At 32 wk, 18∶2n−6 but not 18∶3n−3 was positively correlated with hepatocyte fatty acyl desaturation, wheres the reverse was true at 50 wk. The data indicate that both feedback inhibition through increased n−3 HUFA and decreased C18 fatty acyl substrate concentration are probably important in determining the level of hepatocyte fatty acyl desaturation and that 18∶2n−6 and 18∶3n−3 may differ in their effects on this pathway.  相似文献   

16.
Long chain (C ≥ 20) polyunsaturated fatty acids (LC-PUFAs) represent important components of the human diet. Currently, the predominant sources of these fatty acids are marine fish and algal oils, but high production costs and diminishing feedstock, limit their supply and usage. A more regular sustainable source of these compounds is urgently required and therefore research is being conducted to develop a sustainable, land-based production system. This work describes the metabolic engineering of an artificial pathway that activates the production of C22-PUFAs, docosatetraenoic acid or adrenic acid (ADA) and n-3 docosapentaenoic acid (DPA) in Physcomitrella patens using a gene from a marine algae Pavlova sp. encoding Δ5-elongase and vegetable oil supplementation. The accumulation of ADA and ω-3 DPA were dramatically increased to 24.3 and 11.7 mg L−1 and accounted for 2.3 and 1.1% of total fatty acids, respectively. This is the first report on producing n-3 DPA, DHA precursor, in P. patens. The obtained results prove that this enzyme appears to be more active when fused to a green fluorescence protein reporter gene. These finding reveal that the modification of the fatty acid biosynthetic pathway by genetic manipulation and nutritional supplementation, to produce specific PUFAs in a non-seed lower plant, is a promising technique.  相似文献   

17.
The effects of elevated atmospheric CO2 concentration on soil moisture, N2O fluxes, and biomass production of Phleum pratense were studied in the laboratory. Farmed peat and sandy soil mesocosms sown with P. pratense were fertilized with a commercial fertilizer. In peat soil 10 g N m−2 of commercial fertilizer were added and in sandy soil 15 g N m−2. In both experiments, soil moisture was regulated with deionized water; 18 mesocosms were tended to keep equally moist, and the other 18 were watered with equal amounts of water. Nine mesocosms from both watering treatments were grown under ambient (360 μmol mol−1) CO2 concentration and the remaining nine under doubled (720 μmol mol−1) CO2. N2O efflux was monitored using a closed chamber technique and a gas chromatograph. The elevated supply of CO2 increased production of above- and belowground biomass, soil moisture and N2O fluxes, but decreased the total N content in the aboveground biomass, especially for the sandy soil. In similar water levels, N2O efflux from the sandy soil was the same magnitude as that from the peat soil. In addition to moisture, N availability was the main limiting factor for N2O production, but C availability also seemed to regulate the denitrification activity. In addition to an increase in C availability the increase in the N2O efflux under the raised CO2 concentration also required a simultaneous increase in soil moisture.  相似文献   

18.
Kazuo Mukai  Yuji Okauchi 《Lipids》1989,24(11):936-939
A kinetic study of the reaction between a tocopheroxyl radical and unsaturated fatty acid esters has been undertaken. The rates of allylic hydrogen abstraction from various unsaturated fatty acid esters (ethyl oleate2, ethyl linoleate3, ethyl linolenate4, and ethyl arachidonate5) by the tocopheroxyl radical (5,7-diisopropyltocopheroxyl6) in benzene have been determined spectrophotometrically. The second-order rate constants, k3, obtained are 1.04×10−5 M−1s−1 for2, 1.82×10−2 M−1s−1 for3, 3.84×10−2 M−1s−1 for4, and 4.83×10−2 M−1s−1 for5 at 25.0°C. Thus, the rate constants, kabstr/H, given on an available hydrogen basis are k3/4=2.60×10−6 M−1s−1 for2, k3/2=9.10×10−3 M−1s−1 for3, k3/4=9.60×10−3 M−1s−1 for4, and k3/6=8.05×10−3 M−1s−1 for5. The kabstr/H values obtained for the polyunsaturated fatty acid esters3,4, and5 containing H-atoms activated by two π-electron systems are similar to each other, and are about three orders of magnitude higher than that for the ethyl oleate2 containing H-atoms activated by a single π-system. From these results, it is suggested that the prooxidant effect of α-tocopherol in edible oils and fats may be induced by the above hydrogen abstraction reaction.  相似文献   

19.
The lipid composition of blubber, brain, muscle and heart from a Mediterranean monk sealMonachus monachus (an endangered species) were examined to allow comparisons with more common species of seals. Only neutral lipids (mainly triacylglycerols) were detectable in the blubber lipids, whereas polar lipids predominated in the heart and in the brain. Neutral and polar lipids comprised almost equal proportions in both liver and muscle. Choline glycerophospholipids (CGP) were the major polar lipids, followed by ethanolamine glycerophospholipids (EGP) in the liver, heart and muscle. Cerebrosides accounted for 28.8% of the brain lipids. All lipid classes of the liver contained high levels (31–47%) of polyunsaturated fatty acids (PUFA), with the exception of phosphatidylserine. The total proportion of n−6 PUFA exceeded that of n−3 PUFA in all lipid classes of the liver, due mainly to the high levels of 20∶4n−6. The highest level of 20∶4n−6 occurred in phosphatidylinositol, where it comprised 32.4% of the total fatty acids. The CGP and EGP of the brain contained lower levels of PUFA than those of the liver, muscle and heart. Alkenyl ethers accounted for 35.8% of the total long-chain moieties in brain EGP. The fatty acid composition of blubber triacylglycerols differed from those of the lipid classes from other tissues in that it had a very low ratio of n−6 to n−3 PUFA (0.3) as a result of a lower content of 20∶4n−6.  相似文献   

20.
Dauglas R. Tocher 《Lipids》1993,28(4):267-272
The origin of docosahexaenoic acid (DHA, 22∶6n−3) that accumulates in turbot brain during development was investigated by studying the incorporation and metabolismvia the desaturase/elongase pathways of [1-14C]-labelled polyunsaturated fatty acids (PUFA) in primary cultures of brain astrocytic glial cells. There was little specificity evident in the total incorporation of PUFAs into the turbot astrocytes. However, specificity was apparent in the distribution of the various PUFAs among the individual lipid classes. In particular, there was very specific incorporation of [14C]arachidonic acid (AA, 20∶4n−6) into phosphatidylinositol balanced by a lower incorporation of this acid into total diradyl glycerophosphocholines. [14C]-Linolenic acid (LNA, 18∶3n−3) and [14C]eicosapentaenoic acid (EPA, 20∶5n−3) were metabolizedvia the desaturase/elongase pathways to a significantly greater extent than [14C]linoleic acid (18∶2n−6) and [14C]AA. The turbot astrocytes expressed very little Δ5 desaturase activity and only low levels of Δ4 desaturation activity. Although the percentages were small, approximately 4–5 times as much labelled DHA was produced from [14C]EPA compared with [14C]LNA. However, it was concluded that very little DHA in the turbot brain could result from the metabolism of LNA and EPA in astrocytic glial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号