首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this investigation was to quantitatively describe the time courses of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentrations in the striatum after L-dopa injection using a constructed dopamine metabolism model. The time courses of dopamine, DOPAC and HVA concentration in the striatum of rats was determined before and after the rapid i.v. injection of 10, 50 and 100 mg/kg using the same animals as in the previous report. The endogenous dopamine, DOPAC and HVA concentrations in the striatum before L-dopa administration were 5.9 +/- 0.7 micrograms, 3.6 +/- 0.4 micrograms and 1.0 +/- 0.2 micrograms/g, respectively. The dopamine concentration in the striatum increased immediately after L-dopa injection, with the peak concentration (15.9 +/- 0.5 micrograms/g) occurring at 3 min; then it returned to the pre-medication level until 2 h at 100 mg/kg dosing. The time course of dopamine concentration in the striatum was analyzed on a constructed dopamine metabolism model which has a zero-order production rate for the production of dopamine (i.e. release from the dopamine neuronal terminals) and two apparent first-order clearance terms, one from L-dopa to dopamine, which was estimated in the previous report, and the other from dopamine to dopamine metabolites (DOPAC and HVA). However, the time course of dopamine concentration in the striatum could not be described by this model.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effect of 17 beta-estradiol (E2) on the response of dopamine (DA) and serotonin (5-HT) to acute lithium in the brains of ovariectomized rats was investigated. An E2 injection (100 ng/s.c.) to ovariectomized rats did not change striatal DA levels, whereas the levels of its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), increased 30 min later; concentrations of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), also remained unchanged. In the frontal cortex, DA, 5-HT, HVA and 5-HIAA levels remained unchanged after the E2 injection, whereas DOPAC levels and DOPAC/DA and HVA/DA ratios increased 30 min later. Injection of LiCl (10 mEq) decreased striatal DA levels, increased DOPAC levels and slightly decreased HVA levels; by contrast, frontal cortex DA and HVA levels increased but DOPAC levels were unchanged. A biphasic response of striatal 5-HT levels occurred, increasing shortly after injection of LiCl, followed by a decrease; 5-HIAA levels, however, increased. In the frontal cortex, injection of rats with LiCl led to a gradual increase in 5-HT levels, whereas 5-HIAA concentrations decreased. In the presence of E2, LiCl effected a greater decrease in striatal DA than injection of LiCl alone, advanced the DOPAC peak by 30 min and increased HVA levels; E2 had less effect on the 5-HT response to LiCl, except the decreases in 5-HT and 5-HIAA at 60 min were greater. Furthermore, in the striatum, the increased DA turnover caused by LiCl, estimated by the DOPAC/DA and HVA/DA ratios, was advanced in rats treated with E2. In the presence of E2, LiCl slightly increased frontal cortex DA, DOPAC and HVA levels compared with treatment with LiCl alone, whereas DOPAC levels decreased in rats treated with LiCl + E2 compared with levels in E2-treated rats. Generally, higher levels of 5-HT and 5-HIAA were measured in the frontal cortices of rats treated with LiCl + Ex compared with rats injected with LiCl. These results indicate that E2 potentiates the acute effect of lithium on striatal and frontal cortex DA and 5-HT levels and metabolism, suggesting a role of the hormonal state on this drug response.  相似文献   

3.
In vivo microdialysis in conscious rats combined with HPLC-EC analysis was used to monitor extracellular levels of 3, 4-dihydroxyphenilacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) in the dorsal striatum (STR) during infusions of procain and apomorphine into the nucleus accumbens (N.acc). It was shown that apomorphine infused into the N.acc (2 x 10(-5) M) caused a decrease in striatal extracellular levels of DOPAC, HVA, and 5-HIAA. Infusions of procain into the N.acc (10(-5) M) produced an increase in extracellular DOPAC, and HVA in the STR. Data indicated that the N.acc exerts an inhibitory influence on the metabolism of dopamine in the STR, the influence being under control of dopaminergic system of the N.acc.  相似文献   

4.
The concentrations of dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were measured in the striatum of rats after i.p. injection of dipropyl-2-aminotetralin and the four positional isomers of monohydroxy-dipropyl-2-aminotetralin. All compounds except 8-OH dipropylaminotetralin caused a decrease in DOPAC- and HVA-concentrations. In addition, 5-OH-dipropylaminotetralin produced a small elevation in DA concentrations. In contrast, 7-OH dipropylaminotetralin, in doses of 100 mumol/kg and more, decreased DA to 50% and initially increased HVA and DOPAC to about 200%, after which the concentrations of the metabolites fell to 30% or less. The 5-OH isomer was found to be the most potent compound, decreasing HVA concentrations to 70% at a dose of 0.14 mumol/kg. The potencies are compared to those of catechol-group containing DA-agonists such as apomorphine and N,N-dipropyl-5,6-dihydroxy-2-aminotetralin. In addition, a comparison is made with reported behavioural data. It is suggested that the more active N-alkylated 2-aminotetralins have a conformation which corresponds to that of the alpha rotamer of dopamine.  相似文献   

5.
The purpose of this investigation was to determine whether the increase in the dopamine (DA) concentration in the rat striatum after a rapid iv injection of beta-phenylethylamine (PEA) can be quantitatively explained by the alteration of the striatum PEA concentration using a constructed DA metabolism model and to examine whether the time courses of the striatum DA metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) concentration can be described by this DA metabolism model. The time courses of PEA concentration in plasma and the striatum were determined by gas chromatography-mass spectrometry. The plasma PEA concentration was described by a two-compartment model with nonlinear elimination kinetics. The striatum PEA concentration was about 10 times higher than the plasma PEA concentration. The time course of the striatum PEA concentration was described by a diffusion-limited model including a Michaelis-Menten type transport system from plasma to the striatum and nonlinear elimination from the striatum. The DA concentration in the striatum increased immediately after PEA injection. In contrast, the DOPAC concentration in the striatum decreased immediately. HVA concentration in the striatum increased gradually. Assuming that the enhancement of DA concentration in the striatum after PEA injection is caused by the competitive inhibition of PEA on the reuptake of DA into DA neuronal terminals (and the metabolism from DA to DOPAC is then competitively inhibited by PEA in the DA neuronal terminals), the relationship between the enhancement of DA concentration and PEA concentration in the striatum was analyzed using a constructed DA metabolism model. The enhancement of the DA concentration in the striatum was described quantitatively by this model. Thus, it was clarified that a quantitative relationship between PEA concentration and the enhancement of DA concentration in the striatum is present after PEA injection. However, the time courses of the striatum DOPAC (lower dose) and HVA (time delay) concentrations could not be described by this model. These results indicated that other factors might be necessary to explain the time courses of the DOPAC and HVA concentrations in the striatum after PEA injection, such as the separate evaluation of the effect of PEA on the reuptake of DA into DA neuronal terminals and on the monoamine oxidase-B (MAO-B) activity in the DA neuronal terminals, and the metabolic pathway from DOPAC to HVA.  相似文献   

6.
Apomorphine was found to disrupt memory consolidation in a dose–dependent manner on chicks trained on a 1-trial passive avoidance task with a strong aversant experience. Chicks injected with 4.0 mg/kg apomorphine displayed memory deficits at 180 min after learning and showed marked behavioral disturbances, including increased locomotion and increased pecking at the feet of conspecifics. Pretreatment with the dopamine antagonist haloperidol eliminated the memory disturbance induced by apomorphine and facilitated consolidation of memory in chicks given a weak (20% vol/vol methyl anthralinate) training experience. Time-of-retention data suggested that the memory disruption occurred from 120 min after learning, leading to the suggestion that dopamine–related modulation of the training experience may be involved in late-memory formation processes. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
In order to study the pharmacodynamic effects of drugs on dopamine and serotonin metabolism, a reversed-phase HPLC assay coupled with electrochemical detection (ECD) for measuring plasma concentrations of 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA) was developed. The system was operated isocratically using a mobile phase of aqueous 0.03 M KH2PO4 buffer containing 0.15 mM EDTA in methanol (8.75:1.25), with a final pH of 4.0. The flow rate was set at 1.5 mL/min, and potentials at +450 mV. Using a signal to noise ratio of > 3, the minimum detection limit assessed by direct on-column injection of a standard solution for DOPAC and 5-HIAA was < 1 pg. The assays were linear from basal concentrations (1-10 ng/mL) to 100 ng/mL. The intra- and interassay variations were < 10% and < 20%, respectively.  相似文献   

8.
In the present study we infused taurine (50, 150 or 450 mM, 2 microliters/min for 4h) into the dorsal striatum or into the substantia nigra via microdialysis probe and estimated the extracellular concentrations of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), in the dorsal striatum of anaesthetised rats. Intrastriatal infusion of taurine elevated striatal dopamine at all concentrations studied. At the 450 mM concentration taurine elevated the extracellular dopamine 10-fold, but only in the first 30 min sample after starting the taurine infusion. At 50 and 150 mM taurine elevated dopamine throughout the 4h infusion maximally up to 3-4-fold the control level. Extracellular DOPAC was increased by 150 and 450 mM taurine (up to about 150-160% of the control level), whereas at all three concentrations taurine decreased HVA to about 85% of the control; however, the decrease caused by 450 mM taurine was short-lasting. At all three concentrations taurine infused into the substantia nigra decreased the extracellular dopamine in the ipsilateral striatum to about 40-50% of the control, and increased extracellular DOPAC and HVA maximally to about 150% and 170% of the control, respectively. These results show that the effects of taurine on the concentrations of extracellular dopamine and its metabolites depend on its administration site on nigrostriatal dopaminergic neurons. It elevates the extracellular dopamine when given into the striatum, but when given into the cell body region of the nigrostriatal dopaminergic pathway it decreases the extracellular dopamine in the ipsilateral striatum.  相似文献   

9.
This study determined the effects, in the rat, of 8-day treatment with arginine-aspartate on haloperidol-induced catalepsy, decrease of locomotor activity and change of striatal dopamine, homovanillic acid (HVA) and dihydroxy-phenylacetic acid (DOPAC) content. Arginine-aspartate was able to attenuate the haloperidol-induced decrease of locomotor activity and to significantly reduce the catalepsy. Moreover, arginine-aspartate treatment itself increased striatal dopamine content and produced a significant decrease of the HVA/dopamine ratio. Pretreatment with arginine-aspartate was able to partially counteract the haloperidol-induced changes of dopamine metabolism: the haloperidol-induced increases of the DOPAC/dopamine and HVA/dopamine ratios were significantly reduced in arginine-aspartate- pretreated rats. These results suggest that the action of arginine-aspartate on haloperidol-induced neurobehavioral effects is probably mediated by interference with striatal dopaminergic innervation.  相似文献   

10.
1. The effect of electroconvulsive shock (ECS) on extracellular concentration of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) was examined with the use of in vivo microdialysis in rat striatum. 2. Extracellular concentration of DA was markedly increased up to 183% after single ECS, and that of DOPAC, HVA and 5-HIAA was also significantly increased. The increase after the eighth ECS was attenuated compared to their increase soon after the first ECS. After repeated ECS, baseline concentration of DOPAC, HVA and 5-HIAA was significantly increased, and baseline DA concentration tended to increase. 3. These results suggested that single and repeated ECS activated metabolism of DA and 5-hydroxytryptamine in rat striatum. Activated metabolism of DA may be responsible for the clinical effect of electroconvulsive therapy for parkinsonism.  相似文献   

11.
High-performance liquid chromatography with electrochemical detection has been employed to analyze ultrafiltrates of cerebrospinal fluid of Parkinson's Disease (PD) patients and age-matched controls for the dopamine (DA) metabolites homovanillic acid (HVA) and 5-S-cysteinyldopamine (5-S-CyS-DA). The mean level of HVA in the CSF of PD patients, measured 5 days after withdrawal from L-DOPA therapy, was significantly lower than that measured in controls. By contrast, mean levels of 5-S-CyS-DA were not significantly different in the CSF of PD patients taking L-DOPA (PD-LT patients) the same patients 5 days after discontinuing this drug (PD-LW patients) or controls. However, the mean 5-S-CyS-DA/HVA concentration ratio was significantly (p < 0.05) higher in the CSF of PD-LW patients compared to controls. Although the PD patient population employed in this study had been diagnosed with the disease several years previously and had been treated with L-DOPA for prolonged periods of time the results of this study suggest that low CSF levels of HVA and a high 5-S-CyS-DA/HVA ratio together might represent useful markers for early diagnosis of PD. The high 5-S-CyS-DA/HVA ratio observed in the CSF of PD-LW patients also provides support for the hypothesis that the translocation of glutathione or L-cysteine into neuromelanin-pigmented dopaminergic cell bodies in the substantia nigra might represent an early event in the pathogenesis of PD.  相似文献   

12.
Recent ex vivo findings have shown that morphine increases dopamine (DA) and xanthine oxidative metabolism and ascorbic acid (AA) oxidation in the rat striatum. In the present study, we evaluated the effects of subcutaneous daily morphine (20 mg/kg) administration on DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), AA and uric acid in the striatum of freely moving rats using microdialysis. Dialysates were assayed by high performance liquid chromatography with electrochemical detection. On the first day, morphine administration caused a significant increase in extracellular DA, DOPAC, HVA, AA and uric acid concentrations over a 3 h period after morphine. In all treated rats (n = 7), individual concentrations of DOPAC + HVA were directly correlated with individual AA and uric acid concentrations. Last morphine administration on the 4th day increased DOPAC, HVA, AA and uric acid concentrations but failed to increase those of DA. Individual DOPAC + HVA concentrations were still directly correlated with individual AA and uric acid concentrations. These results suggest that systemic morphine increases both striatal DA release and DA and xanthine oxidative metabolism. Only the former effect undergoes tolerance. The increase in DA oxidative metabolism is highly correlated with that of xanthine. The subsequent enhancement in reactive oxygen species production may account for the increase in extracellular AA.  相似文献   

13.
1. The effect of electroconvulsive shock (ECS) on the extracellular concentration of dopamine (DA), dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA) was examined in the frontal cortex of rats with the use of in vivo microdialysis. 2. The extracellular concentration of DOPAC, HVA and 5-HIAA was largely increased after the first ECS treatment. The increase after the eighth ECS treatment tended to be attenuated or was significantly attenuated as compared to that after the first ECS treatment. The baseline concentration of DOPAC and 5-HIAA was significantly increased after repeated ECS, though that of DA and HVA did not show any significant change after repeated ECS. 3. These results suggest that the activating effect of repeated ECT on 5-hydroxytryptaminergic (5-HT) and DA neurotransmission, (especially on 5-HT neurotransmission), is significant in improving depression both in patients with Parkinson's disease (PD) and in those who do not suffer from PD.  相似文献   

14.
We report a patient with a parkinsonian syndrome induced by sertraline (Zoloft), an SSRI antidepressant, whose symptoms resolved after the drug was discontinued. This case prompted us to investigate the effect of sertraline on dopamine metabolism in animals. Sertraline (30 mg/kg, i.p.) or placebo (vehicle) was administered to two groups of six normal, anesthetized rats and using cerebral microdyalisis extracellular striatal levels of dopamine, the dopamine metabolites (HVA and DOPAC), as well as the serotonin metabolite 5-HIIA were monitored. In animals pre-treated with sertraline, DOPAC, HVA, and 5-HIAA levels were significantly decreased compared to control animals (p < 0.01). These data indicate that sertraline has an effect on dopamine metabolism, which may alter function in the striatum and induce a parkinsonian syndrome.  相似文献   

15.
To test the hypothesis that dopamine (DA) receptors influence cerebral DOPA-decarboxylase (DDC) activity in vivo, we used HPLC to measure the kinetics of the cerebral uptake and metabolism of [3H]DOPA in carbidopa-treated rats, and in rats also treated acutely with a DA receptor antagonist (flupenthixol, 2 mg/kg, intraperitoneally) or a DA receptor agonist (apomorphine, 200 microg/g, subcutaneously). The unidirectional blood-brain clearance of [3H]DOPA (K1DOPA, 0.030 mL g(-1) min(-1)) increased by 50% after flupenthixol. The magnitudes of the relative DDC activity (k3DOPA) in striatum (0.20 min(-1)), olfactory tubercle (0.11 min(-1)), and hypothalamus (0.15 min(-1)) of carbidopa-treated rats were doubled with flupenthixol, but cortical DDC activity was unaffected (0.02 min(-1)). Apomorphine reduced the magnitude of k3DOPA in striatum by 20%. The rate constant for catabolism of [3H]DA formed in brain (k7', monoamine oxidase [MAO] activity), which ranged from 0.025 min(-1) in striatum to 0.08 min(-1) in hypothalamus of carbidopa-treated rats, globally increased 2- to 4-fold after flupenthixol, and decreased to 0.003 min(-1) in striatum after apomorphine. These in vivo results confirm the claim that acute blockade of DA receptors with flupenthixol stimulates the synthesis of [3H]DA from [3H]DOPA, and that this [3H]DA is subject to accelerated catabolism. Conversely, activation of the DA receptors with apomorphine inhibits DDC activity and DA catabolism.  相似文献   

16.
The effects of mesulergine (100 and 200 microg/kg s.c.), SB 206553 (1 and 2.5 mg/kg i.p.), RP 62203 (2.5 and 4 mg/kg i.p.) and ritanserin (630 microg/kg i.p.) were studied on the extracellular concentration of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens of chloral hydrate-anesthetized rats, using intracerebral microdialysis. Mesulergine, a non selective serotonin2C/2B/2A (5-HT2C/2B/2A) receptor antagonist, significantly increased DA release, which reached a peak level (+ 20%) 60 min after drug injection and slowly returned back to baseline values. Mesulergine also caused a dose-dependent increase in DOPAC outflow. Pretreatment with mesulergine (200 microg/kg) did not change the inhibition of DA release induced by apomorphine (100 microg/kg), whereas it prevented the reduction of DOPAC outflow induced by apomorphine (100 microg/kg). Administration of SB 206553, a selective blocker of 5-HT2C/2B receptors, dose-dependently increased DA outflow. The dose of 2.5 mg/kg SB 206553 caused a linear increase of DA output which reached a peak (+75%) 40 min after injection, while 1 mg/kg induced a more gradual increase of DA release which peaked (+54%) 60 min after administration of the drug. Treatment with RP 62203, a selective 5-HT2A receptor antagonist, did not produce any significant effect on DA outflow. Administration of ritanserin, a mixed 5-HT2A/2C receptor antagonist, did not cause any significant change of DA and DOPAC outflow. Taken together, these data indicate that selective blockade of 5-HT2/2B receptor subtypes increases DA release in the rat nucleus accumbens.  相似文献   

17.
Due to its higher lipid solubility, sufentanil may be less likely than morphine to migrate rostrally in the cerebral spinal fluid (CSF) and cause delayed respiratory depression following epidural administration. However, early respiratory depression has been reported in patients after relatively large doses of epidural sufentanil. This has been attributed to systemic drug uptake. We used a dog model to investigate the pharmacokinetics and rostral spread of epidural sufentanil in CSF. Sampling catheters were placed in the lumbar subarachnoid space, the cisterna magna, and femoral arteries of six mongrel dogs. Samples of cisternal CSF, lumbar CSF, and blood were drawn at 0, 1, 5, 15, 30, 60, 90, 120, and 180 min after lumbar epidural sufentanil injection. We measured sufentanil concentrations by gas chromatography-mass spectrometry and used the least squares method to a fit tri-exponential function to each sufentanil concentration versus time data set. Paired t-test was used to test for statistical significance. After epidural sufentanil, lumbar CSF concentrations were significantly higher than plasma or cisternal CSF sufentanil concentrations at all assessment times. Sufentanil concentrations were significantly higher in cisternal CSF than in plasma at 30 and 60 min after injection. Sufentanil appeared rapidly in lumbar CSF, reaching a maximum concentration (Cmax) of 57 ng/mL at 6.5 min. In cisternal CSF, a Cmax of 1.2 ng/mL was reached at 21 min, and Cmax in plasma was 0.35 ng/mL at 6 min. The area under the concentration-time curve (AUC) of sufentanil in cisternal CSF was approximately six times higher than the plasma AUC (P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Peripheral plasma levels of homovanillic acid (HVA), the deaminated and o-methylated metabolite of dopamine, are often used as an indicator of central nervous system dopaminergic activity. Using percutaneously placed catheters, we studied the regional inputs into the plasma HVA pool in 60 healthy volunteers. Veno-arterial differences and organ plasma flows were used to quantify the relative amounts of HVA contributed by various sites into the peripheral circulation. Positive arterio-venous HVA gradients were found in the pulmonary, hepatosplanchnic, skeletal muscle and jugular vessels of the normal volunteers. No HVA increment was found in the coronary sinus. The renal circulation was determined to be the principal site of HVA clearance, extracting 27 nmol/min. The regional contributions of HVA were as follows: lungs 21 nmol/min, hepatosplanchnic organs 3 nmol/min, skeletal muscle 3 nmol/min and the brain 4 nmol/min. The pattern of regional HVA production contrasted with that of the deaminated dopamine metabolite, dihydroxyphenylacetic acid, for which the heart was the principal site of production identified. Sixteen patients with chronic congestive heart failure (CHF) and 6 patients with pure autonomic failure (PAF) were also studied to investigate possible effects of sympathetic nervous system overactivity and underactivity on peripheral HVA production and plasma HVA concentration. The resting arterial plasma HVA concentration in CHF was increased approximately 3-fold. Unexpectedly, this was attributable to reduced HVA plasma clearance, not increased HVA production. Total HVA production in PAF was diminished by 40%. PAF patients had normal resting arterial HVA levels, this being accounted for by a 57% fall in the renal plasma clearance of HVA. Acute sympathetic nervous system activation in response to bicycle riding was accompanied by a 34% increase in the arterial concentration of HVA. It can be concluded that HVA is produced at a number of sites throughout the body not renowned for their dopaminergic innervation. Regional HVA production is associated, in part, with the metabolism of precursor dopamine in sympathetic nerves and at a rate which appears to be influenced by sympathetic nervous activity. To obtain an accurate indication of central dopaminergic activity the confounding influences of HVA plasma clearance and peripheral HVA production must be excluded.  相似文献   

19.
The role of monoamine oxidase (MAO) type A and B on the metabolism of dopamine (DA) in discrete regions of the monkey brain was studied. Monkeys were administered (-)-deprenyl (0.25 mg/kg) or clorgyline (1.0 mg/kg) or deprenyl and clorgyline together by intramuscular injections for 8 days. Levels of DA and its metabolites, dihydroxy phenylacetic acid (DOPAC) and homovanillic acid (HVA) were estimated in frontal cortex (FC), motor cortex (MC), occipital cortex (OC), entorhinal cortex (EC), hippocampus (HI), hypothalamus (HY), caudate nucleus (CN), globus pallidus (GP) and substantia nigra (SN). (-)-Deprenyl administration significantly increased DA levels in FC, HY, CN, GP and SN (39-87%). This was accompanied by a reduction in the levels of DOPAC (37-66%) and HVA (27-79%). Clorgyline administration resulted in MAO-A inhibition by more than 87% but failed to increase DA levels in any of the brain regions studied. Combined treatment of (-)-deprenyl and clorgyline inhibited both types of MAO by more than 90% and DA levels were increased (57-245%) in all brain regions studied with a corresponding decrease in the DOPAC (49-83%) and HVA (54-88%) levels. Our results suggest that DA is metabolized preferentially, if not exclusively by MAO-B in some regions of the monkey brain.  相似文献   

20.
This study investigated the relationships between blood pressure, cortical oxygen pressure, and extracellular striatal dopamine in the brain of adult cats during hemorrhagic hypotension and retransfusion. Oxygen pressure in the blood of the cortex was measured by the oxygen dependent quenching of phosphorescence and extracellular dopamine, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) by in vivo microdialysis. Following a 2 h stabilization period after implantation of the microdialysis probe in the striatum, the mean arterial blood pressure (MAP) was decreased in a stepwise manner from 132 +/- 2 Torr (control) to 90 Torr, 70 Torr and 50 Torr, holding the pressure at each level for 15 min. The whole blood was then retransfused and measurements were continued for 90 min. As the MAP was lowered there was a decrease in arterial pH, from a control value of 7.37 +/- 0.05 to 7.26 +/- 0.06. The PaCO2 decreased during bleeding from 32.3 +/- 4.8 Torr to 19.6 +/- 3.6 Torr and returned to 30.9 +/- 3.9 Torr after retransfusion. The PaO2 was 125.9 +/- 15 Torr during control conditions and did not significantly change during bleeding. Cortical oxygen pressure decreased with decrease in MAP, from 50 +/- 2 Torr (control) to 42 +/- 1 Torr, 31 +/- 2 Torr and 22 +/- 2 Torr, respectively. A statistically significant increase in striatal extracellular dopamine, to 2,580 +/- 714% of control was observed when MAP decreased to below 70 Torr and cortical oxygen pressure decreased to below 31 Torr. When the MAP reached 50 Torr, the concentration of extracellular dopamine increased to 18,359 +/- 2,764% of the control value. A statistically significant decrease in DOPAC and HVA were observed during the last step of bleeding. The data show that decreases in systemic blood pressure result in decrease in oxygen pressure in the microvasculature of the cortex, suggesting vascular dilation is not sufficient to result in a full compensation for the decreased MAP. The decrease in cortical oxygen pressure to below 32 Torr is accompanied by a marked increase in extracellular dopamine in the striatum, indicating that even such mild hypoxia can induce significant disturbance in brain metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号