首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hypoxic pulmonary vasoconstriction (HPV) of rat pulmonary arteries in vitro occurs in four phases. Initial vasodilation (phase 1), is followed by transient contraction (phase 2), further vasodilation (phase 3) and finally a second sustained contraction (phase 4). We have investigated the role of ET-1 in HPV using the ETA receptor antagonist CI-1020. Small rat pulmonary arteries (SPA, n=32, diameter=454+/-22 microM) were mounted in a wire myograph. Two contractions to 80 microM KCl ensured response reproducibility and relaxation to 10 microM acetyl choline following constriction with 100 microM prostaglandin F2alpha (PGF2alpha) to indicate endothelial integrity. A control hypoxic response was produced following priming with 5 microM PGF2alpha. Vessels (n=8) were then exposed to either vehicle or CI-1020 (1, 10 or 100 microM) for 30 min in the dark before re-exposure to PGF2alpha and hypoxia. Responses were standardized as a percentage of contraction to 80 mM KCl. Vehicle caused an increase in phase 2 of HPV of +2.51+/-4.20% (expressed as difference between pre- and post-drug values). CI-1020 (1, 10 and 100 microM) caused a significant reduction in phase 2 of HPV of -9. 76+/-1.40%, -9.23+/-2.30% and -7.96+/-1.70%, respectively (P<0.05). These results suggest that phase 2 of HPV in rat SPA is attributed, in part, to the action of ET-1 at the ETA receptor.  相似文献   

2.
Chronic hypoxia produces pulmonary artery hypertension through vasoconstriction and structural remodeling of the pulmonary vascular bed. The present study was designed to test the effect of heparin administered via aerosol on the development of hypoxic pulmonary hypertension. Anesthetized, intubated, and mechanically ventilated guinea pigs received an aerosol of either 2 ml normal saline (hypoxic control, HC) or 4,500 units of heparin diluted in 2 ml normal saline via an ultrasonic nebulizer (hypoxic heparin, HH). After 24 h of recovery, the animals were placed in a hypoxic chamber (10% O2) for 10 days. Animals kept in room air served as normoxic controls (NC). Hypoxia increased mean pulmonary artery pressure from 11 +/- 1 (SEM) mm Hg in NC to 24 +/- 1 mm Hg in HC (p < 0.05). Pulmonary artery pressure was significantly lower in HH-treated animals (20 +/- 1 mm Hg, p < 0.05 versus HC) as was the total pulmonary vascular resistance (0.15 +/- 0.01 in HH versus 0.20 +/- 0.01 mm Hg/ml/min in HC, p < 0.05). There was no difference in cardiac output (146 +/- 12 in HH versus 126 +/- 7 ml/min in HC), hematocrit (57 +/- 2 in HH versus 56 +/- 2% in HC), partial thromboplastin time (30 +/- 2 in HH versus 32 +/- 3 s in HC), prothrombin time (46 +/- 1 in HH versus 48 +/- 4 s in HC) or room air arterial blood gas values after 10 days of hypoxia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Brain natriuretic peptide (BNP) is a pulmonary vasodilator that is elevated in the right heart and plasma of hypoxia-adapted rats. To test the hypothesis that BNP protects against hypoxic pulmonary hypertension, we measured right ventricular systolic pressure (RVSP), right ventricle (RV) weight-to-body weight (BW) ratio (RV/BW), and percent muscularization of peripheral pulmonary vessels (%MPPV) in rats given an intravenous infusion of BNP, atrial natriuretic peptide (ANP), or saline alone after 2 wk of normoxia or hypobaric hypoxia (0.5 atm). Hypoxia-adapted rats had higher hematocrits, RVSP, RV/BW, and %MPPV than did normoxic controls. Under normoxic conditions, BNP infusion (0.2 and 1.4 micro g/h) increased plasma BNP but had no effect on RVSP, RV/BW, or %MPPV. Under hypoxic conditions, low-rate BNP infusion (0.2 micro g/h) had no effect on plasma BNP or on severity of pulmonary hypertension. However, high-rate BNP infusion (1.4 micro g/h) increased plasma BNP (69 +/- 8 vs. 35 +/- 4 pg/ml, P < 0.05), lowered RV/BW (0.87 +/- 0.05 vs. 1.02 +/- 0.04, P < 0.05), and decreased %MPPV (60 vs. 74%, P < 0.05). There was also a trend toward lower RVSP (55 +/- 3 vs. 64 +/- 2, P = not significant). Infusion of ANP at 1.4 micro g/h increased plasma ANP in hypoxic rats (759 +/- 153 vs. 393 +/- 54 pg/ml, P < 0.05) but had no effect on RVSP, RV/BW, or %MPPV. We conclude that BNP may regulate pulmonary vascular responses to hypoxia and, at the doses used in this study, is more effective than ANP at blunting pulmonary hypertension during the first 2 wk of hypoxia.  相似文献   

4.
OBJECTIVE: Elevated levels of the potent vasoactive peptide endothelin (ET), have been found in pathophysiological conditions associated with pulmonary hypertension. In this study, we have investigated the effects of the ETA receptor antagonist, BMS-182874, on hypoxic pulmonary hypertension in pigs. METHODS: Pigs were subjected to acute, intermittent 15-min periods of hypoxia (FiO2 0.1). Following a first hypoxia establishing hypoxic baseline values, vehicle or BMS-182874 (10 or 30 mg/kg) was administered i.v. before a second hypoxic period. In separate groups of animals, the effects of the nitric oxide synthase inhibitor N omega-nitro-L-arginine (L-NNA) in combination with BMS-182874 (10 mg) during repeated hypoxia were investigated. The ET-1-blocking properties of BMS-182874 were studied in vivo by infusion of ET-1 during normoxia and in vitro using isolated porcine pulmonary arteries. RESULTS: The hypoxia-evoked increase in mean pulmonary artery pressure was reduced by administration of BMS-182874 (10 mg/kg i.v.; from 42 +/- 8 to 34 +/- 4 mmHg, P < 0.05 and 30 mg/kg i.v.; from 38 +/- 4 to 30 +/- 5 mmHg, P < 0.05). In addition, BMS-182874 at 30 mg/kg reduced the pulmonary vascular resistance during hypoxia (from 7.4 +/- 1.5 to 5.3 +/- 1.1 mmHg.min.l-1 P < 0.05). The hemodynamic response to repeated hypoxia was reproducible in control animals and unaffected by the cyclo-oxygenase inhibitor diclophenac (3 mg/kg). Infusion of L-NNA alone resulted in an augmented pulmonary vasoconstriction during hypoxia; pulmonary arterial pressure from 35 +/- 6 to 43 +/- 9 mmHg; P < 0.05 and vascular resistance from 7.2 +/- 1.1 to 9.9 +/- 1.8 mmHg.min.l-1; P < 0.05. L-NNA in combination with BMS-182874 (10 mg/kg) resulted in a hypoxic pulmonary vasoconstriction of similar magnitude as hypoxic baseline. In addition, BMS-182874 reduced the hemodynamic response to ET-1 in normoxic pigs and competitively antagonized the vasoconstrictor effect of ET-1 in isolated porcine pulmonary arteries. CONCLUSIONS: The non-peptide, selective ETA receptor antagonist, BMS-182874, reduces hypoxic pulmonary vasoconstriction in pigs. The reduction in pulmonary vascular response to hypoxia following BMS-182874 is at least partly independent of nitric oxide.  相似文献   

5.
Chronic hypoxia induces an overall sympathetic hyperactivation associated with a myocardial beta-receptor desensitization. The mechanisms involved in this desensitization were evaluated in 32 male Wistar rats kept in a hypobaric pressure chamber (PO2 = 40 Torr, atmospheric pressure = 450 Torr) for 5 days. In hypoxic compared with normoxic conditions, plasma norepinephrine (NE) levels were higher (2.1 +/- 0.7 vs. 0.6 +/- 0.2 ng/ml) with no difference in the plasma epinephrine levels (2.2 +/- 0.7 vs. 1.8 +/- 0.3 ng/ml). In hypoxia neuronal NE uptake measured by [3H]NE was decreased by 32% in the right ventricle (RV) and by 35% in the left ventricle (LV), and [3H]mazindol in vitro binding showed a decrease in uptake-1 carrier protein density by 38% in the RV and by 41% in the LV. In vitro binding assays with [3H]CGP-12177 indicate beta-adrenoceptor density reduced by 40% in the RV and by 32% in the LV, and this was due to reduced beta1-subtype fraction (competition binding experiments with practolol). Hypoxia reduced the production of cAMP induced by isoproterenol (36% decrease in the RV and 41% decrease in the LV), 5'-guanylylimododiphosphate (40% decrease in the RV and 42% decrease in the LV), and forskolin (39% decrease in the RV and 41% decrease in the LV) but did not alter the effect of MnCl2 and NaF. Quantitation of inhibitory G-protein alpha-subunit by immunochemical analysis showed a 46% increase in the cardiac-specific isoform Gialpha2 in hypoxic hearts. The present data demonstrate that in rats 5-day hypoxia leads to changes in pre- and postsynaptic myocardial adrenergic function. The myocardial desensitization associated with both a reduction in externalized beta1-adrenoceptor and an increase in inhibitory G-protein subunit may be caused by increased synaptic NE levels due to impaired uptake-1 system.  相似文献   

6.
Endothelin-1 (ET-1), a potent vasoactive and mitogenic peptide, has been implicated in the pathogenesis of several forms of pulmonary hypertension. We hypothesized that nonspecific blockade of ET receptors would blunt the development of monocrotaline (MCT)-induced pulmonary hypertension in rats. A single dose of the nonspecific ET blocker bosentan (100 mg/kg) given to intact rats by gavage completely blocked the pulmonary vasoconstrictor actions of Big ET-1 and partially blunted hypoxic pulmonary vasoconstriction. After 3 wk, MCT-injected (105 mg/kg sc) rats gavaged once daily with bosentan (200 mg/kg) had lower right ventricular (RV) systolic pressure (RVSP), RV-to-body weight (RV/BW) and RV-to-left ventricular (LV) plus septal (S) weight [RV/(LV+S)] ratios and less percent medial thickness of small pulmonary arteries than control MCT-injected rats. Lower dose bosentan (100 mg/kg) had no effect on these parameters after MCT or saline injection. Bosentan raised plasma ET-1 levels but had no effect on lung ET-1 levels. Bosentan (200 mg/kg) also had no effect on wet-to-dry lung weight ratios 6 days after MCT injection. When given during the last 10 days, but not the first 11 days of a 3-wk period after MCT injection, bosentan reduced RV/(LV+S) compared with MCT-injected controls. We conclude that ET-1 contributes to the pathogenesis of MCT-induced pulmonary hypertension and acts mainly during the later inflammatory rather than the acute injury phase after injection.  相似文献   

7.
BACKGROUND: Endothelin A (ETA) receptor antagonists have been shown to improve ventricular remodeling and survival in rats when started 10 days after infarction. Whether starting them earlier would have a more or less beneficial effect is uncertain. METHODS AND RESULTS: Rats surviving an acute myocardial infarction (MI) for 24 hours (n=403) were assigned to saline or the ETA receptor antagonist LU 127043 or its active enantiomer LU 135252 for 4 weeks. Chronic LU treatment had no effect on survival, with 46% of LU rats and 47% of saline-treated rats with large MI surviving to the end of the study. LU treatment led to scar thinning, further left ventricular (LV) dilatation, an increase in LV end-diastolic pressure, and an increase in wet lung weight (P<0.05). Despite this detrimental effect on LV function, LU led to a significant decrease in RV systolic (50+/-2 to 44+/-2 mm Hg, P<0.05 vs saline) and right atrial pressures. LU treatment also prevented the increase in pulmonary ET-1 found in saline-treated rats with large MI but did not modify the increase in cardiac ET-1 in hearts with large MI. CONCLUSIONS: The early use of the ETA receptor antagonists LU 127043 or its active enantiomer LU 135252 after infarction in the rat leads to impaired scar healing and LV dilatation and dysfunction. This is accompanied by a decrease in RV systolic and right atrial pressures and a decrease in pulmonary but not cardiac ET-1 levels. It would thus appear that the early use of ETA receptor antagonists after infarction may be detrimental.  相似文献   

8.
Heparin inhibits smooth-muscle cell (SMC) growth in vitro and inhibits the development of hypoxic pulmonary hypertension and vascular remodeling in vivo. We wondered whether preparations of heparin with different antiproliferative potency in vitro would differ in their ability to inhibit the development of hypoxic pulmonary hypertension in vivo. Two such heparins, a weakly antiproliferative lot of Elkins-Sinn (E-S) (% inhibition of SMC growth at 10 micrograms/ml = 13 +/- 9% [mean +/- SEM, n = 24]) and a more active lot from Upjohn (UJ) (% inhibition = 71 +/- 12% [n = 12, p < 0.05 versus E-S]), were infused subcutaneously (300 U.S.P. units/day; E-S 300 versus UJ 300) via an osmotic pump into guinea pigs exposed to hypoxia (10% O2) for 10 d, after which pulmonary artery pressure (PAP; mm Hg) and cardiac index (CI; ml/min/kg) were measured in room air. Hypoxic controls (HC) received saline. PAP increased from 11 +/- 1 mm Hg in normoxic controls (NC) (n = 5) to 24 +/- 1 mm Hg in HC (n = 8, p < 0.05). The PAP was lower in the E-S 300 (21 +/- 1; n = 7, p < 0.05 versus HC and NC) and even lower in the UJ 300-treated group (18 +/- 0.5; n = 7, p < 0.05 versus HC and NC). Total pulmonary vascular resistance (TPR; mm Hg/ml/min/kg) increased significantly from 0.038 +/- 0.002 in NC to 0.076 +/- 0.003 (p < 0.05) in HC. There was no difference in TPR between the HC and the E-S 300-treated group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Vascular endothelial growth factor (VEGF) is a potent mitogenic and permeability factor targeting predominantly endothelial cells. At least two tyrosine kinase receptors, Flk-1 and Flt-1, mediate its action and are mostly expressed by endothelial cells. VEGF and VEGF receptor expression are upregulated by hypoxia in vivo and the role of VEGF in hypoxia-induced angiogenesis has been extensively studied in a variety of disease entities. Although VEGF and its receptors are abundantly expressed in the lung, their role in hypoxic pulmonary hypertension and the accompanying vascular remodeling are incompletely understood. We report in this in vivo study that hypoxia increases mRNA levels for both VEGF and Flk-1 in the rat lung. The kinetics of the hypoxic response differ between receptor and ligand: Flk-1 mRNA showed a biphasic response to hypoxia with a significant, but transient, rise in mRNA levels observed after 9-15 h of hypoxic exposure and the highest levels noted after 3 wk. In contrast, VEGF mRNA levels did not show a significant increase with acute hypoxia, but increased progressively after 1-3 wk of hypoxia. By in situ hybridization, VEGF mRNA was localized predominantly in alveolar epithelial cells with increased signal in the lungs of hypoxic animals compared with controls. Immunohistochemical staining with anti-VEGF antibodies localized VEGF peptide throughout the lung parenchyma and was increased in hypoxic compared with normoxic animals. Furthermore, hypoxic animals had significantly higher circulating VEGF concentrations compared with normoxic controls. Lung vascular permeability as measured by extravasation of Evans Blue dye was not significantly different between normoxic and hypoxic animals, although a tendency for increased permeability was seen in the hypoxic animals. These findings suggest a possible role for VEGF in the pulmonary response to hypoxia.  相似文献   

10.
OBJECTIVE: To determine whether local cardiac angiotensin converting enzyme (ACE) expression is upregulated during the development of hypoxia-induced right ventricular hypertrophy. METHODS: ACE activity was measured in membrane preparations from the right ventricle and left ventricle plus septum in normoxic rats and animals exposed to chronic hypoxia for 8 and 14 days. Local cardiac ACE expression was studied by immunohistochemistry using a monoclonal antibody to ACE (9B9). RESULTS: In the normal rat heart, ACE expression was confined to vascular endothelium, the valvular endocardium, and localized regions of parietal endocardium. We found that the development of pulmonary hypertension and right ventricular hypertrophy were associated with 2.6- and 3.4-fold increases in membrane-bound right ventricular ACE activity by 8 and 14 days of hypoxia, respectively. Right ventricular ACE activity was positively correlated with the degree of right ventricular hypertrophy (r = 0.83, P < 0.001). In contrast, left ventricular plus septal ACE activity was significantly reduced by approximately 40 and 60% by 8 and 14 days of hypoxia, respectively, compared to controls. In the right ventricle of chronically hypoxic rats, immunohistochemistry demonstrated increased ACE expression in areas of myocardial fibrosis. Interestingly, increased ACE expression was noted in the right ventricular epicardium in chronically hypoxic rats. In the free wall of the left ventricle there was a significant reduction in the number of myocardial capillaries which expressed ACE in chronically hypoxic rats. CONCLUSION: Chronic hypoxia has a differential effect on left and right ventricular ACE activity and that the sites of altered ACE expression are highly localized. We speculate that locally increased right ventricular ACE activity and expression may play a role in the pathogenesis of right ventricular hypertrophy secondary to hypoxic pulmonary hypertension.  相似文献   

11.
OBJECTIVE: To investigate the role of platelet activating factor (PAF) in the hypoxic pulmonary hypertension. MATERIAL AND METHODS: Fifteen of 30 male Wistar rats were exposed to hypoxia for 3 weeks, and another 15 rats served as controls. The pulmonary arterial pressure was examined by catheterization. The sections of rat lung were treated by the avidin-biotin-peroxidase complex method to expose the location of PAF. RESULTS: The rats developed pulmonary hypertension and right ventricular hypertrophy after hypoxic exposure. Under the light microscope, PAF is distributed on the vascular and alveolar walls of normal lung, and the content of PAF in the lung of rats with hypoxic pulmonary hypertension are remarkably higher than those of normoxic controls. CONCLUSIONS: PAF plays not only a physiological role in the rat lung, but also a pathophysiologic role in hypoxic pulmonary hypertension.  相似文献   

12.
Hypoxia activates erythropoietin-producing cells, chemoreceptor cells of the carotid body and pulmonary artery smooth muscle cells (PSMC) with a comparable arterial PO2 threshold of some 70 mmHg. The inhibition by CO of the hypoxic responses in the two former cell types has led to the proposal that a haemoprotein is involved in the detection of the PO2 levels. Here, we report the effect of CO on the hypoxic pulmonary vasoconstriction (HPV). Pulmonary arterial pressure (PAP) was measured in an in situ, blood-perfused lung preparation. PAP in normoxia (20% O2, 5% CO2) was 15.2+/-1.8 mmHg, and hypoxia (2% O2, 5% CO2) produced a DeltaPAP of 6.3+/-0.4 mmHg. Addition of 8% or 15% CO to the hypoxic gas mixture reduced the DeltaPAP by 88.3+/-2.7% and 78.2+/-6.1% respectively. The same levels of CO did not affect normoxic PAP nor reduced the DeltaPAP produced by angiotensin II. The effect of CO was studied after inhibition of the NO-cyclic guanosine monophosphate (cGMP) cascade with N-methyl-l-arginine (5.10(-5) M) or methylene blue (1.4.10(-4) M). It was found that both inhibitors more than doubled the hypoxic DeltaPAP without altering the effectiveness of CO to inhibit the HPV. In in vitro experiments we verified the inhibition of guanylate cyclase by measuring the levels of cGMP in segments of the pulmonary artery. Cyclic GMP levels were 1.4+/-0.2 (normoxia), 2.5+/-0.3 (hypoxia) and 3.3+/-0.5 pmole/mg tissue (hypoxia plus 8% CO); sodium nitroprusside increased normoxic cGMP levels about fourfold. Methylene blue reduced cGMP levels to less than 10% in all cases, and abolished the differences among normoxic, hypoxic and hypoxic plus CO groups. It is concluded that CO inhibits HPV by a NO-cGMP independent mechanism and it is proposed that a haemoprotein could be involved in O2-sensing in PSMC.  相似文献   

13.
In the previous researches we found that the albino rats of Wistar stock, raised from the time of birth under hypoxia at simulated altitude, showed a displacement of the acid-base balance of blood towards the acid side and an increase in the 2,3-DPG, in Hb concentration and in the number of erythrocytes for mm3 of blood. In the same animals the body growth was slower in comparison to the control normoxic group. In order to separate the eventual effects of hypobaria from those of hypoxia "per se" we have repeated our research in normobaric hypoxic environment for 51 days as minimum period and 86 as maximum period of observation. The samples of blood were collected with heart drawing. The acid-base balance was determined by a hemogas-analyzer IL 213, the lactacidemia with the Boehringer enzyme tests. The animals showed again a displacement of the acid-base balance of blood towards the acid side. Nevertheless this phenomenon was less accentuated than in hypobaric conditions. The Weight curve of hypoxic animals superimposed to normoxic controls until 35 degree days. Thereafter the two curves turned apart within 20%.  相似文献   

14.
15.
Increased prevalence of hypertension and long-term arsenic exposure   总被引:2,自引:0,他引:2  
A possible role of endothelin (ET)-1 in mediating hypoxic pulmonary vasoconstriction (HPV) was examined by comparing haemodynamic differences between ET-1-induced vasoconstriction and HPV in isolated perfused rat lungs. An ETA receptor antagonist (BQ123) was also employed to assess the effects of ET-1. The pulmonary arterial pressure (Ppa) was significantly increased by alveolar hypoxia (3% O2) and by ET-1 (5 nM). The pulmonary microvascular pressure was not changed by hypoxia, but increased more than two-fold by ET-1 (P < 0.01). Hypoxia significantly increased pulmonary arterial resistance (P < 0.01) while ET-1 significantly increased pulmonary venous resistance (P < 0.01), and slightly increased arterial resistance. Lung weight was increased by ET-1 and decreased by hypoxia, accompanied by similar Ppa responses in both cases. BQ123 (10(-6) M and 10(-5) M) did not influence the changes in Ppa and lung weight induced by hypoxia or angiotensin II (0.3 micrograms). BQ123 did, however, suppress (P < 0.05) the increase in Ppa and lung weight induced by 5 nM ET-1. Thus, it appears unlikely that ET-1 is involved in changes in pulmonary vascular tone during acute HPV.  相似文献   

16.
Studies in animal models and humans suggest that myocardium may adapt to chronic or intermittent prolonged episodes of reduced coronary perfusion. Stable maintenance of partial flow reduction is difficult to achieve in experimental models; thus, in vitro cellular models may be useful for establishing the mechanisms of adaptation. Since moderate hypoxia is likely to be an important component of the low-flow state, isolated adult rat cardiac myocytes were exposed to 1% O2 for 48 hours to study chronic hypoxic adaptation. Hypoxic culture did not reduce cell viability relative to normoxic controls but did enhance glucose utilization and lactate production, which is consistent with an anaerobic pattern of metabolism. Lactate production remained transiently increased after restoration of normal O2 tension. Myocyte contractility was reduced (video-edge analysis), as was the amplitude of the intracellular Ca2+ transient (indo 1 fluorescence) in hypoxic cells. Relaxation was slowed and was accompanied by a slowed decay of the Ca2+ transient. These changes were not due to alterations in the action potential. Tolerance to subsequent acute severe hypoxia occurred in cells cultured in 1% O2 and was manifested as a delay in the time to full ATP-depletion rigor contracture during severe hypoxia and enhanced morphological recovery of myocytes at reoxygenation. The latter was still seen after normalization of the data for the prolonged time to rigor, suggesting a multifactorial basis for tolerance. An intervening period of normoxic exposure before subsequent acute severe hypoxia did not result in loss of tolerance but rather increased the delay to subsequent ATP depletion rigor. Cellular glycogen was preserved during chronic hypoxic exposure and increased after the restoration of normal O2 tension. As mitochondrial cytochromes should be fully oxygenated at levels well below 1% O2, hypoxic adaptation may be mediated by a low-affinity O2-sensing process. Thus, adaptations that occur during prolonged periods of moderate hypoxia are proposed to poise the myocyte in a better position to tolerate impending episodes of severe O2 deprivation.  相似文献   

17.
Pulmonary thromboendarterectomy (PTE) leads to an acute decrease of right ventricular (RV) afterload in patients with chronic thromboembolic pulmonary hypertension. We investigated the changes in right and left ventricular (LV) geometry and hemodynamics by means of transthoracic echocardiography. The prospective study was performed in 14 patients (8 female, 6 male; age 55 +/- 20 years) before and 18 +/- 12 days after PTE. Total pulmonary vascular resistance and systolic pulmonary artery pressure were significantly decreased (PVR: preoperative 986 +/- 318, postoperative 323 +/- 280 dyn x s/cm5, p < 0.05; PAP preoperative 71 +/- 40, postoperative 41 +/- 40 mm Hg + right atrial pressure, p < 0.05). End diastolic and end systolic RV area decreased from 33 +/- 12 to 23 +/- 8 cm2, respectively, from 26 +/- 10 to 16 +/- 6 cm2, p < 0.05. There was an increase in systolic RV fractional area change from 20 +/- 12 to 30 +/- 16%, p < 0.05. RV systolic pressure rise remained unchanged (516 +/- 166 vs. 556 +/- 128 mm Hg/sec). LV ejection fraction remained within normal ranges (64 +/- 16 vs. 62 +/- 12%). Echocardiographically determined cardiac index increased from 2.8 +/- 0.74 to 4.1 +/- 1.74 l/min/m2. A decrease in LV excentricity indices (end diastolic: 1.9 +/- 1 vs. 1.1 +/- 0.3, end systolic: 1.7 +/- 0.6 vs. 1.1 +/- 0.4, p < 0.05) proved a normalization of preoperatively altered septum motion. LV diastolic filling returned to normal limits: (E/A ratio: 0.62 +/- 0.34 vs. 1.3 +/- 0.8; p < 0.05); Peak E velocity: 0.51 +/- 0.34 vs. 0.88 +/- 0.28 m/sec, p < 0.05; Peak A velocity: 0.81 +/- 0.36 vs. 0.72 +/- 0.42 m/sec, ns; E deceleration velocity: 299 +/- 328 vs. 582 +/- 294 cm/sec2, p < 0.05; Isovolumic relaxation time: 134 +/- 40 vs. 83 +/- 38 m/sec, p < 0.05). We could show a marked decrease in RV afterload shortly after PTE with a profound recovery of right ventricular systolic function--even in case of severe pulmonary hypertension. A decrease in paradoxic motion of the interventricular septum and normalization of LV diastolic filling pattern resulted in a significant increase of cardiac index.  相似文献   

18.
Mechanical properties of the adult pulmonary vasculature are affected by perinatal experience of hypoxic pulmonary hypertension. In the present study, we followed the long-term effects of perinatal pulmonary hypertension induced by means other than hypoxia in rats. Daily injections of indomethacin (1 mg.kg-1 body weight (BW)) were given to the parturient rats. Their newborn pups had significantly increased number of muscularized peripheral pulmonary vessels. Pulmonary hypertension, however, did not persist to adulthood (mean pulmonary arterial pressure (Ppa) was 17.2 +/- 1.3 torr in the experimental group and 16.4 +/- 0.8 torr in controls). Pulmonary hypertension induced in adult rats by exposure to chronic hypoxia or by acute hypoxic challenges was similar in indomethacin-treated and control rats. Normoxic perfusion pressure/flow (P/Q) plots in isolated lungs were less steep in indomethacin-treated than in control rats. Acute hypoxia increased the slope of P/Q plots in indomethacin treated rats but not in controls. The described changes in the pulmonary vasculature induced by indomethacin are similar to those found previously in adult rats born in hypoxia. We conclude that perinatal pulmonary hypertension permanently modifies the pulmonary vasculature.  相似文献   

19.
Exposure to hypoxia is associated with increased pulmonary artery pressure and plasma endothelin (ET-1) levels and with selective enhancement of ET-1 peptide and messenger RNA (mRNA) and endothelin-A (ET-A) receptor mRNA in rat lung. Our study tested the hypothesis that A-127722, an orally active antagonist of the ET-A receptor, can prevent hypoxia-induced pulmonary hypertension and vascular remodeling in the rat. Pretreatment with A-127722 (3, 10, and 30 mg/kg/day in drinking water for 2 days) caused dose-dependent inhibition of the pulmonary vasoconstrictor response to short-term hypoxia (10% O2, 90 min). Long-term A-127722 treatment (10 mg/kg/day in drinking water for 2 weeks) instituted 48 h before hypoxic exposure attenuated the subsequent development of pulmonary hypertension, the associated right atrial hypertrophy, and pulmonary vascular remodeling. Institution of A-127722 treatment (10 mg/kg/day in drinking water for 4 weeks) after 2 weeks of hypoxia retarded the progression of established hypoxia-induced pulmonary hypertension and right atrial hypertrophy and reversed the pulmonary vascular remodeling despite continuing hypoxic exposure. These findings support the hypothesis that endogenous ET-1 plays a major role in hypoxic pulmonary vasoconstriction/hypertension, right heart hypertrophy, and pulmonary vascular remodeling and suggest that ET-A receptor blockers may be useful in the treatment and prevention of hypoxic pulmonary hypertension in humans.  相似文献   

20.
The purpose of these studies was to examine the effects of hypoxia on alpha 1-adrenergic receptor (alpha 1AR) mediated phosphatidylinositol (PI) turnover in cultured neonatal rat cardiac myocytes. Cells were pre-labeled with [3H]-inositol and incubated for 1 h in either normoxia or hypoxia. Phenylephrine, an alpha 1AR agonist, was added at various time intervals (0-60 min) before termination of the incubation. There was a time-dependent release of radioactivity from the lipid fraction to the aqueous fraction with alpha 1AR stimulation. alpha 1AR-mediated PI turnover was biphasic in normoxic cells and monophasic in hypoxic cells. Using ion-exchange chromatography, radioactivity in the inositol trisphosphate (IP3) peak was increased with acute phenylephrine stimulation (5 min) in the normoxic cells, while inositol phosphate (IP) and inositol bisphosphate (IP2) were increased with chronic stimulation (60 min). After 5 min of alpha 1AR stimulation, hypoxia did not alter total aqueous radioactivity when compared to normoxia, but there was a significant increase in IP2. However, there was decreased PI turnover in chronically stimulated (30-60 min) hypoxic cells when compared to normoxic cells. Hypoxia had no effect on radioactivity in the IP3 fraction with either 0, 5, or 60 min of alpha 1AR stimulation, but there was a significant increase in [1,4,5]-IP3 in hypoxic cells with 30 s alpha 1AR stimulation. With hypoxia, there was no difference in radioactivity in the phosphatidylinositols with either 0 or 5 min stimulation when compared to normoxia. However, after 60 min of alpha 1AR stimulation, hypoxia resulted in increased PI and PIP, when compared to normoxic cells, but PIP2 radioactivity was unchanged. There was no effect of pertussis toxin on either the acute or chronic phase of PI turnover, negating involvement of Gi or G(o). These data suggest that alpha 1AR stimulation in neonatal rat cardiac myocytes is biphasic, and that hypoxia produces a slower monophasic response during extended alpha 1-agonist exposure as would be found with ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号