首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
炭/炭复合材料高温抗氧化涂层的研究进展   总被引:35,自引:12,他引:35  
阐述了近年来国内外炭/炭复合材料高温抗氧化涂层在玻璃、贵金属、陶瓷以及复合涂层等涂层体系方面的新近展,总结了炭/炭复合材料高温抗氧化涂层在已有制备工艺的完善以及新工艺的开发等方面的最新研究成果,结合涂层炭/炭复合材料在航空、航天以及军事领域的应用背景对高温抗氧化涂层的下一步发展趋势进行了展望.指出:目前的研究结果尚达不到严酷环境下的应用要求,炭/炭复合材料高温抗氧化涂层下一阶段将向着长寿命、耐高温、抗冲刷和低成本的方向发展;涂层新工艺的开发和涂层与基体结合研究将是下一步的研究重点;多相复合涂层和梯度陶瓷涂层有望取得在高温冲刷环境下长时间应用的突破性进展.  相似文献   

2.
为提高炭/炭(C/C)复合材料的抗高温燃气冲刷性能,分别采用包埋法、化学气相沉积法和料浆法在其表面制备了三层涂层。借助扫描电镜、电子能谱等测试手段对涂层试样的微观结构进行了分析,同时研究了涂层C/C复合材料在高温风洞环境中的抗冲刷性能,并分析了涂层在燃气冲刷环境下的失效原因。结果表明:三层涂层由MoSi2-SiC-Si多相内涂层、SiC中间层和玻璃外涂层构成,其厚度分别为80μm,20μm和80μm。该复合涂层可在1500℃风洞环境下对C/C复合材料有效保护53h。涂层在高温风洞中防氧化失效是由于涂层在热冲击以及承受气流冲击的恶劣环境下开裂引起的。  相似文献   

3.
为提高炭/炭(C/C)复合材料的高温抗氧化性能,采用料浆涂刷法首先在C/C复合材料表面制备了预炭层,然后以Si粉及石墨粉(Si粉与石墨粉的质量配比为:60~80:10~25)为原材料采用包埋法经高温热处理获得C/SiC内涂层,最后在涂有C/SiC内涂层的C/C复合材料表面采用包埋法制备Si-Mo-Cr外涂层。借助扫描电镜、X射线衍射、电子能谱等分析测试手段对涂层试样的微观结构进行了分析,研究了涂层C/C复合材料在1 873 K和1 973 K下的氧化行为。结果表明:由于涂层氧化过程中表面生成了SiO2和Cr2O3复合玻璃层,其在1 873 K温度下表现出优异的防氧化性能,可以有效保护C/C复合材料达135 h。当氧化温度提高至1 973 K并氧化30 h后,该复合涂层氧化过程玻璃层完整性被破坏,涂层失效。  相似文献   

4.
炭/炭复合材料用SiC-Glass涂层的高温氧化机理   总被引:2,自引:1,他引:1       下载免费PDF全文
采用包埋法和预涂-烧结法相结合的组合工艺在炭/炭(C/C)复合材料表面制得SiC-Glass复合涂层, 并借助X射线衍射仪(XRD)和扫描电镜(SEM)对该复合涂层进行了表征, 研究了涂层C/C试样在不同温度下的氧化动力学规律。结果表明: 复合涂层具有双层结构, 包埋SiC内层由β-SiC相和少量游离硅相组成, 外层由MoSi2颗粒掺杂的硼硅酸盐玻璃构成; 内外层之间结合紧密; 在1300~1600℃的空气气氛中, SiC-Glass涂层表现出良好的抗氧化性能, 其氧化激活能为118.1kJ/mol, 氧化主要受控于氧在Glass层中的体扩散速率; 在1600℃空气气氛中氧化65h后, SiC-Glass涂层C/C试样的氧化失重率仅为1.02%。   相似文献   

5.
陶瓷涂层技术是解决炭/炭(C/C)复合材料高温易氧化难题的有效手段。本文阐述了C/C复合材料的氧化过程与抗氧化途径,综述了近年来国内外C/C复合材料高温防氧化单相、多相镶嵌,梯度复合,晶须增韧以及多层复合等陶瓷涂层体系的最新研究进展,并就陶瓷涂层目前存在的问题以及下一步研究的重点提出了一些见解。  相似文献   

6.
系统研究了SiO2与B2O3之比、高熔点添加剂种类(包括MoSi2,Y2O3,SiC)及含量对硼硅酸盐(SAB)玻璃涂层高温稳定性、高温流动性的影响规律和最佳工艺参数组合,采用涂刷法在带有疏松结构的SiC内涂层炭/炭(C/C)复合材料表面制备了高温稳定性和流动性良好的硼硅酸盐玻璃外涂层,并测试了带有不同SiC/硼硅酸盐玻璃复合涂层C/C复合材料试样在1500℃静态空气中的抗氧化性能.结果表明:采用SiO2,B2O3摩尔比为4∶1时所得硼硅酸盐玻璃具有相对较高的高温流动性和高温稳定性;与添加Y2O3,SiC相比,在上述硼硅酸盐玻璃中添加MoSi2可以较大幅度提高所得玻璃涂层对C/C基体的氧化保护性能,并且当硼硅酸盐玻璃外涂层中硼硅酸盐与MoSi2的质量比为4∶1时,所得硼硅酸盐玻璃外涂层对SiC-C/C表现出较好的氧化保护能力,氧化17h后涂层C/C试样的失重仅为4.31%.  相似文献   

7.
炭/炭(C/C)复合材料高温下易氧化,严重制约了其应用.高温合金涂层技术是解决该问题的有效手段.综述了近几年来C/C复合材料高温抗氧化合金涂层的最新研究进展,介绍了Si-Cr系、Si.Mo系、Sj-Mo-X(W,Ta,Cr)系、Al基以及Ir系舍金涂层的高温抗氧化性能,分析了部分合金涂层失效的原因,提出了C/C复合材料...  相似文献   

8.
炭/炭复合材料表面预炭层的制备及其性能研究   总被引:3,自引:1,他引:3  
为在炭/炭复合材料表面制备C/SiC浓度梯度高温抗氧化涂层,预先用料浆涂刷-高温处理工艺在其表面制备了预炭层.借助XRD、Raman和SEM等测试手段对所制备预炭层的组织结构和微观形貌进行了表征,讨论了不同的原料配比和炭化温度对预炭层结构的影响,并对预炭层与基体的结合性能进行了测定.研究结果表明:制备的预炭层结构致密,与基体具有较好的结合性能,其结合强度可达10.95MPa.不同的原料配比和炭化温度影响了炭层序态结构的形成,最终形成了不同结构的预炭层.  相似文献   

9.
研究二氧化硅微米粉和纳米粉质量分数分别为6%,12%,18%和24%时所形成的防氧化涂层对炭/炭复合材料抗氧化性能的影响,并对涂层氧化前后的组成、形貌变化进行X射线衍射分析(XRD)和扫描电子显微镜分析(SEM)。结果表明:随着SiO2微米粉含量的增加,涂层氧化失重率先减后增,其最佳含量为18%,氧化失重率0.38%;而添加SiO2纳米粉涂层则随着含量的增加,氧化失重率增加,其含量最低为6%时,氧化失重率最小,为2.88%。  相似文献   

10.
炭/炭(C/C)复合材料抗氧化温度低,不适合用于飞机刹车盘。将5%,10%,15%,20%硼(B)或碳化硼(B4C)粉末掺入由45%Na2B4O7.10H2O,20%SiC,15%CaSO4.2H2O,10%SiO2,10%Al2O3和水组成的抗氧化剂中,制成抗氧化涂料,并将其涂覆在C/C复合材料表面,经800℃热处理,形成抗氧化涂层。采用X射线衍射(XRD)和扫描电子显微镜(SEM)对涂层氧化前后的组成、形貌进行检测,研究了700℃氧化15h和900℃氧化2h后涂层的抗氧化性能。结果表明:B和B4C的含量对涂层的抗氧化性有一定的影响,当B4C含量为20%时,涂层的抗氧化效果最佳,氧化失重率低,分别为0.73%(700℃,15h)和0.64%(900℃,2h)。用B4C取代B粉制备抗氧化涂层,既可以满足飞机刹车盘抗高温氧化的要求,又能节约生产成本。  相似文献   

11.
采用等离子喷涂(Atmospheric plasma spraying,APS)法在炭/炭复合材料碳化硅(SiC)内涂层表面制备了硅酸钇涂层。分别采用XRD和SEM分析了所得涂层的微观结构,并测试了带有SiC/硅酸钇复合涂层的炭/炭复合材料试样在1500℃静态空气中的抗氧化性能。结果表明:通过调节喷涂粉料中的SiO2和Y2O3的摩尔比,可制得Y2SiO5、Y2Si2O7、Y2Si2O7/Y2SiO5和Y4Si3O12/Y2Si2O7/Y2SiO5四种不同结构的硅酸钇涂层;1500℃氧化73h后,SiC/Y4Si3O12/Y2Si2O7/Y2SiO5涂层试样的氧化失重速率相对较低,仅为1.01×10-4g.cm-.2h-1。  相似文献   

12.
为防止飞机刹车副用炭/炭(C/C)复合材料在刹车过程中氧化失效,研究了以磷酸、氧化硅和磷酸盐等为原料所制备的磷酸盐涂层的抗氧化性能,结果表明:涂覆有涂层的C/C复合材料在700 ℃氧化66 h后,其氧化失重率仅为1.11%;涂层试样在1 200 ℃氧化5 min后,失重率不超过0.8%;经900 ℃、3 min←→室温、2 min 100次热震后,涂层试件失重率为1.6%.涂层与基体结合牢固,一直保持完好,没有剥落,说明该涂料具有耐高温、热稳定性好等优点,适合作为C/C复合材料表面防氧化涂层.  相似文献   

13.
采用等离子喷涂法在涂覆SiC内涂层的炭/炭复合材料表面制备了Cr-Al-Si外涂层。采用XRD和SEM分析了涂层的物相组成及微观结构, 并测试了复合涂层炭/炭复合材料试样在1500℃静态空气中的抗氧化性能。结果表明: 合金外涂层主要由Al3.21Si0.47、 Cr3Si及Al2O3组成, 厚度约为120μm, 无穿透性裂纹; 多孔结构单一β-SiC内涂层的防氧化能力较差, 氧化10h后涂层试样的氧化失重就接近10%, 外加Cr-Al-Si涂层后, 涂层试样的氧化性能显著提高, 氧化61 h后试样的失重仅为5.3%。   相似文献   

14.
炭/炭复合材料表面氧化硼减摩涂层研究   总被引:2,自引:0,他引:2  
通过料浆法在碳化硅涂层炭/炭复合材料表面制备了三氧化二硼涂层。采用XRD、SEM对涂层的结构和表面形貌进行了表征,并对涂层的摩擦性能进行了测试,同时还探讨了涂层的润滑机理。结果表明:所制涂层的摩擦系数为0.06~0.08,比炭/炭复合材料的摩擦系数(0.15~0.18)低,减磨效果明显。究其原因主要在于三氧化二硼涂层在空气中,表面层将转变为硼酸,具有自润滑能力。  相似文献   

15.
炭/炭复合材料在1500℃的抗氧化   总被引:1,自引:0,他引:1  
本文研究了C/C复合材料MoSi2涂层系统的抗氧化性能。结果表明,MoSi_2涂层系统具有1500℃长时间抗氧化和优良的抗热震性能,在1500℃时,242h的氧化失重仅为0.75%;长时间的氧化失重速率稳定在2.43×10-5g/m2·s的极低水平。  相似文献   

16.
选用A,B,C和D四个炭/炭复合材料试样进行抗氧化涂层厚度的光学测量研究。其中试样A和B孔隙度相同,均为15.85%,对其涂覆粒径分别为1μm和10μm的B4C涂层;试样C和D孔隙度分别为13.52%和16.78%,对其均涂覆粒径为10μm的B4C涂层。通过光学金相测量分析其涂层厚度。结果表明,当试样孔隙度相同时,涂层材料粒度越小,其涂层厚度越厚;当抗氧化涂层材料粒度相同时,试样孔隙度越大,涂层厚度越厚。同时,在抗氧化涂层厚度计算过程中,对试样组织内部没渗透抗氧化涂层的孔隙需进行图像处理,以期得到涂层厚度的准确值。  相似文献   

17.
采用医用炭/炭复合材料并通过梯度化学气相沉积法(CVD)在其表面制备热解炭涂层, 研究分析了涂层的显微结构、摩擦系数、磨损情况. 结果发现, 该热解炭涂层表面被直径约20 μm热解炭球致密覆盖, 在断口处呈现紧密、多层的热解炭. 与用沥青浸渍/炭化法制备的炭/炭复合材料相比, 在干摩擦时, 热解炭涂层样品的摩擦系数更大; 在模拟人体关节的湿摩擦时, 它的摩擦系数低; 在干摩擦和湿摩擦的情况下, 它的磨损要小很多. 这些结果表明利用梯度的化学气相沉积法(CVD)制备医用炭/炭复合材料的涂层可以提高其表面的耐磨性.  相似文献   

18.
采用两段式包埋法和封闭处理的复合新工艺制得抗氧化性优良的MoSi2/SiC复合梯度C/C复合材料高温抗氧化涂层。涂层由内至外结构为:SiC过渡层→SiC致密层→MoSi2/SiC双相层→以MoSi2为主的外层。对未封闭处理的涂层,制备过程中高温保温时间长的氧化失重少,1200℃、1300℃空气中氧化失重比1400℃、1500℃氧化失重大。用正硅酸四乙酯对涂层表面进行封闭处理,凝胶形成的SiO2可充填涂层表面裂纹并覆盖在涂层表面。在1500℃空气中氧化一定时间后,未封闭处理的涂层试样表现为氧化失重;封闭处理后的试样为氧化增重,氧化52h仍然只有1.28%的增重,封闭处理使涂层的抗氧化性能明显改善。   相似文献   

19.
为提高炭/炭复合材料的防氧化性能,采用包埋法与超音速等离子喷涂法相结合,在其表面制备了SiC/SiC+mullite/mullite多层防氧化涂层.外涂层主要组成是莫来石(mullite)相.对涂层试样进行了1 500℃恒温氧化和1 500℃~室温热震测试.实验结果表明,涂层试样经1 500℃恒温氧化150 h后,失重率仅为0.26%;经1 500℃~室温15次热震后,失重率仅为0.25%,显示出较优异的防氧化、抗热震性能.莫来石(mullite)具有良好的耐高温性能、低的氧扩散率,且SiC涂层氧化生成的SiO2在高温下能够愈合裂纹等缺陷,这是SiC/SiC+mullite/mullite涂层较好防氧化能力的主要原因.  相似文献   

20.
纤维含量和热处理对炭/炭复合材料性能的影响   总被引:3,自引:1,他引:2  
研究了炭纤维体积分数和预制体热处理温度对炭/炭复合材料力学性能的影响.结果表明,随着预制体中炭纤维体积分数的增加炭/炭复合材料的硬度逐渐增加,但当炭纤维的体积分数大于30%时,炭/炭复合材料硬度增加的幅度减小.炭纤维体积分数的增加对炭/炭复合材料硬度的影响有两个相反的作用,纤维的增强作用将使硬度增大,而孔隙率的增加将导致硬度的减小.炭/炭复合材料的抗弯强度随着纤维体积分数的增加而增加,但因纤维体积分数的增加会导致孔隙减小.致使热解炭不能充分地渗透填充到纤维间的孔隙内,抗弯强度下降,所以随着纤维体积分数的增加,材料的弯曲强度会出现拐点.随着预制体热处理温度的不同,炭/炭复合材料有脆性断裂、整束纤维拔出的假塑性断裂和部分炭纤维拔出的假塑性断裂三种断裂机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号