首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Ni、W为活性组分,Al_2O_3为载体,制备催化剂Ni-W/Al_2O_3,并采用乙二醇后处理未焙烧的催化剂Ni-W/Al_2O_3,得到催化剂Ni-W/Al_2O_3-AT。通过X射线衍射(XRD)、氢气程序升温还原(H_2-TPR)、紫外拉曼光谱(LRS)、透射扫描电子显微镜(TEM)、XPS等表征方法研究催化剂的物化性质。结果表明:催化剂Ni-W/Al_2O_3经乙二醇后处理后,改善了载体氧化铝表面的羟基基团的分布,促使W物种以八面体配位多核聚钨酸的形态存在;并有效削弱了载体与活性金属之间的强相互作用,提高了W物种的分散度与硫化度,最终使得催化剂形成更多"Ni-W-S"加氢活性相,提高了催化剂Ni-W/Al_2O_3-AT的加氢活性。与催化剂Ni-W/Al_2O_3相比,催化剂Ni-W/Al_2O_3-AT对焦化轻蜡油具有更高的加氢脱硫、脱氮与芳烃饱和性能,硫质量分数可从6 850μg/g降至10μg/g,氮质量分数由3 720μg/g降至12μg/g,双环以上芳烃质量分数可从25.8%降至3.2%。  相似文献   

2.
用原位激光喇曼光谱测得了硫化态W/γ-Al_2O_3催化剂在不同条件下的喇曼光谱。选择了一些典型的钨化合物,研究了它们的硫化条件和化学形态之间的关系,发现AMT最容易硫化,H_2WO_4处于中等,而WO_3最难硫化。本文应用控制气氛高温原位激光喇曼光谱,配合以俄歇能谱及ESCA能谱研究了氧化态和硫化态催化剂上活性组分的化学形态。在氧化态催化剂表面上发现了两种化合物:聚钨酸和聚集态WO_3。在硫化态催化剂表面上也发现了两类化合物:WS_2和硫氧化钨以及非活性组分的WO_3。而WS_2则是从聚钨酸转变而来,是催化剂加氢脱氮(HDN)的主要活性物。  相似文献   

3.
研究了NiO—WO_3/Al_2O_3催化剂制备中的各种因素对NiAl_2O_4尖晶石的生成以及对吡啶加氢脱氮(HDN)活性和噻吩加氢脱硫(HDS)活性的影响。实验结果表明,混捏法制备比浸渍法制备的催化剂更易生成尖晶石(NiAl_2O_4)。焙烧条件对 NiAl_2O_4的生成有重要影响,随着焙烧温度和时间的增加,生成的 NiAl_2O_4也增加,而 HDN 和 HDS 活性下降。  相似文献   

4.
用原位激光喇曼光谱测得了硫化态W/y-AI_2O_3催化剂在不同条件下的喇曼光谱.选择了一些典型的钨化合物,研究了它们的硫化条件和化学形态之间的关系,发现AMT最容易硫化,H_2WO_4处于中等,而WO_3最难硫化。本文应用控制气氛高温原位激光喇曼光谱,配合以俄歇能谱及ESCA能谱研究了氧化态和硫化态催化剂上活性组分的化学形态.在氧化态催化剂表面上发现了两种化合物:聚钨酸和聚集态WO_3。在硫化态催化剂表面上也发现了两类化合物:WS_2和硫氧化钨以及非活性组分的WO_3。而WS_2则是从聚钨酸转变而来,是催化剂加氢脱氯(HDN)的主要活性物.  相似文献   

5.
采用浸渍法以钛酸丁酯和偏钨酸铵为原料制备了WO_3-TiO_2/ZSM-5光催化剂,并将其用于模拟柴油脱氯,利用XRD、N_2吸附-脱附、UV-Vis等技术对制备的催化剂进行表征,考察了WO_3-TiO_2/ZSM-5催化剂脱氯实验的最佳反应条件,研究了催化剂对不同有机氯化物配制的模拟油的脱氯实验。表征结果显示,WO3-Ti O2/ZSM-5光催化剂保留了ZSM-5分子筛的结构。实验结果表明,在WO_3和Ti O_2负载量分别为2.5%(w)和20%(w),催化剂焙烧温度550℃,脱氯实验的反应温度50℃,紫外灯光照时间为4 h,剂油体积比为1∶40时,WO3-Ti O2/ZSM-5光催化剂的脱氯率最高,达98.7%;WO_3-Ti O_2/ZSM-5催化剂对不同种类的有机氯化物脱除效果不同,脱除率最好的为CH_2Cl_2。催化剂经五次使用后仍有较好的脱氯效果。  相似文献   

6.
考察钨源(磷钨酸和偏钨酸铵)和浸渍方法(共浸渍和分步浸渍)对以MCM-41为载体的NiW基催化剂的物化性质及催化喹啉加氢脱氮反应的影响,并通过XRD、FT-IR、UV-DRS、XPS和Py-IR等表征手段对样品进行了表征。结果表明:以偏钨酸铵为钨源采用共浸渍法制备的催化剂具有最高的加氢脱氮活性。该催化剂钨物种的分散度最高,表面酸量及活性物种前体最多。  相似文献   

7.
γ-Al_2O_3上钼镍存在形式与催化性能的关系   总被引:2,自引:0,他引:2  
本文用漫反射光谱法研究了MoO_3-NiO/γ—Al_2O_3催化剂上钼和镍的存在形式及其影响因素,并把钼和镍的存在形式与加氢脱氮、加氢脱硫活性进行了关联。提出了预测催化剂活性的方法。  相似文献   

8.
分别以Al_2O_3和TiO_2-Al_2O_3为载体,采用浸渍法制备了Ni负载量相同的裂解汽油一段选择加氢催化剂Ni/Al_2O_3和Ni/TiO_2-Al_2O_3;采用X射线衍射、低温N_2物理吸附、压汞法和氢程序升温还原等方法对载体和催化剂进行了表征,并对催化剂的活性和选择性进行了评价。表征结果显示,TiO_2-Al_2O_3载体中TiO_2的晶相为β-TiO_2,Al_2O_3为无定形相;Ni/TiO_2-Al_2O_3催化剂中15~110 nm的孔体积占总孔体积的近70%,而Ni/Al_2O_3催化剂中15~110 nm的孔体积占总孔体积的近50%;Ni/TiO_2-Al_2O_3催化剂的还原温度低于Ni/Al_2O_3催化剂。催化剂的评价结果表明,在反应温度65℃、反应压力2.8 MPa、液态空速4 h~(-1)、H_2与裂解汽油体积比为500:1的条件下,Ni/TiO_2-Al_2O_3催化剂的加氢活性和选择性高于Ni/Al_2O_3催化剂。  相似文献   

9.
新型磷化钨催化剂加氢脱氮及活化性能研究   总被引:1,自引:0,他引:1  
以γAl2O3为载体,磷酸氢二铵和偏钨酸铵为原料,采用高纯氢气还原无定型磷钨酸盐的方法,分别通过共浸渍法和机械混合法制备了不同磷化钨负载量的催化剂,比较了制备方法及负载量对催化剂吡啶加氢脱氮性能的影响,同时考察了磷化钨催化剂的活化性能。结果表明,共浸渍法制备的催化剂,活性组分和载体之间的作用较强;而机械混合法制备的催化剂,活性组分与载体之间的作用较弱,当负载量增加时,活性组分在催化剂表面发生聚集。机械混合法制备的催化剂,其吡啶加氢脱氮性能优于共浸渍法制备的催化剂。无载体磷化钨发生活化反应的温度在570℃左右,而共浸渍负载30%WP/γ-Al2O3催化剂的适宜活化温度为500℃。  相似文献   

10.
采用化学气相沉积法制备了Ni/Al_2O_3催化剂,对其进行了加氢活性评价和表征.结果表明,在合适的条件下,可以得到具有高分散度和高活性的Ni/Al_2O_3催化剂.在Al_2O_3载体中引入助剂可以减弱活性组分Ni与Al_2O_3载体之间的相互作用,有利于NiO还原成Ni活性中心.化学气相沉积法制备的Ni/Al_2O_3催化剂比传统浸渍法制备的Ni/Al_2O_3催化剂具有更高的加氢活性.透射电镜结果表明,Al_2O_3载体表面上Ni活性相呈纳米分布,具有较高的分散度,该催化剂中Ni质量分数可降低32.5%,而其加氢催化活性不降低.化学气相沉积法制备的Ni/Al_2O_3催化剂可用于白油加氢精制.  相似文献   

11.
对传统Al_2O_3载体加以改进,研制出一种适用于掺炼劣质催化裂化(FCC)汽油的重整预加氢催化剂CoMoNi/Al_2O_3-SiO_2。该催化剂具有较高的加氢脱硫、脱氮及烯烃饱和性能,在反应压力为2.5 MPa、体积空速为4.0 h-1、氢油体积比为200∶1的工艺条件下,掺炼不同比例催化汽油时,加氢产品均能达到重整原料的要求。催化剂1 500 h活性稳定性试验结果表明,该催化剂具有良好的活性稳定性。  相似文献   

12.
改变Pt、W前体盐的浸渍顺序,采用分步浸渍法制备了2个系列的Pt-W/Al_2O_3催化剂,并采用H_2-TPR、H_2脉冲化学吸附、XRD、XPS等技术,考察金属含量、金属盐浸渍顺序对催化剂物化性质及其催化甘油氢解性能的影响。结果表明,先浸渍(NH_4)6H_2W12O_40的Pt-W/Al_2O_3系列催化剂的H_2化学吸附量、催化甘油氢解的转化率和1,3-丙二醇选择性均高于先浸渍H_2PtCl_6·6H_2O的Pt-W/Al_2O_3系列催化剂的;且2个系列的Pt-W/Al_2O_3催化剂催化甘油氢解的转化率和1,3-丙二醇收率均随着WO_3含量的增加而先增加后减少,当WO_3质量分数为5%时,甘油转化率和1,3-丙二醇收率最高。这些变化规律主要归因于WO_3对Pt的分散作用、Pt-W的协同作用、合适的W负载量所形成的多钨酸物种提供了更多Br?nsted酸位等结构因素。2%Pt-5%W/Al_2O_3催化甘油氢解可获得59.6%的甘油转化率和43.3%的1,3-丙二醇选择性。  相似文献   

13.
在固定床反应装置上考察了噻吩、二丙基硫醚和正丁硫醇对裂解C_9一段加氢Ni/Al_2O_3催化剂加氢活性的影响,采用XPS和XRD对催化剂进行了表征,分析了硫化物影响Ni/Al_2O_3催化剂加氢活性的机理。实验结果表明,在考察的反应条件下,噻吩和二丙基硫醚影响Ni/Al_2O_3催化剂加氢活性的原因是硫化物吸附在催化剂的活性中心,占据了加氢活性位,降低了反应分子与催化剂活性位的接触机会;正丁硫醇影响Ni/Al_2O_3催化剂加氢活性的原因是活性金属Ni与正丁硫醇分解生成的H_2S反应生成硫化镍,催化剂的加氢活性相变为硫化态,同时正丁硫醇和生成的硫醚类硫化物吸附在催化剂的活性中心,占据了加氢活性位,使催化剂活性降低。  相似文献   

14.
采用过饱和浸渍法制备4种大孔Mo-Ni-NH3/r-Al2O3催化剂,考察了助溶剂种类和用量对活性金属分散性的影响,利用X射线衍射、透射电镜、N2吸附-脱附、H2-程序升温还原、X射线光电子能谱等表征制备催化剂的结构和物种分布,并通过劣质催化裂化柴油加氢精制评价催化剂的活性。结果表明:采用助溶剂三乙醇胺制备的催化剂A40中活性相分散性最好,预硫化后催化剂表面存在大量高分散的MoS2片层晶格条;A40催化剂具有更低还原温度和更高硫化度,高活性金属物种Mo4+占比高达86.46%,高活性NiMoS物种占比为56.3%;在制备的4种催化剂中,A40催化剂的加氢脱硫、加氢脱氮和芳烃饱和活性均最高,对催化裂化柴油的脱硫率、脱氮率和芳烃饱和率分别为95.99%,97.48%,65.82%,说明A40催化剂是一种性能良好的加氢催化剂。  相似文献   

15.
用红外光谱和紫外-可见漫反射光谱研究了Mo-Ni-P/γ-Al_2O_3催化剂上钼、镍和磷的存在形式。证明了在γ—Al_2O_3上磷主要以磷酸铝的形式存在。磷的加入可以影响钼和镍的存在形式和分布,从而对催化剂的加氢脱氮活性有影响。  相似文献   

16.
以Mo和Ni为活性组分、γ-Al_2O_3为载体,采用具有不同官能团的有机物制备了MoNiP/Al_2O_3催化剂。通过H_2-TPR、XRD、原位Raman光谱、CO吸附红外光谱、XPS及HRTEM等方法表征了催化剂的组成和结构。以蜡油为原料,在反应压力11.0 MPa、氢油体积比700∶1、反应温度370℃、液态空速1.0 h~(-1)的条件下评价了催化剂的加氢活性。实验结果表明,添加具有不同官能团的有机物,特别是氨类有机物,改善了载体氧化铝表面羟基基团的分布,促使更多的Mo物种以八面体配位多核聚钼酸形态存在,并有效削弱了载体与活性金属之间的强相互作用,提高了Mo物种的分散度与硫化度,使催化剂形成更多的"Mo-Ni-S"加氢活性相,提高了催化剂的加氢活性。添加氨类有机物的催化剂对蜡油具有更高的芳烃饱和活性、加氢脱硫和加氢脱氮活性。  相似文献   

17.
以Mo和Ni为活性组分、γ-Al_2O_3为载体,采用具有不同官能团的有机物制备了MoNiP/Al_2O_3催化剂。通过H_2-TPR、XRD、原位Raman光谱、CO吸附红外光谱、XPS及HRTEM等方法表征了催化剂的组成和结构。以蜡油为原料,在反应压力11.0 MPa、氢油体积比700∶1、反应温度370℃、液态空速1.0 h^(-1)的条件下评价了催化剂的加氢活性。实验结果表明,添加具有不同官能团的有机物,特别是氨类有机物,改善了载体氧化铝表面羟基基团的分布,促使更多的Mo物种以八面体配位多核聚钼酸形态存在,并有效削弱了载体与活性金属之间的强相互作用,提高了Mo物种的分散度与硫化度,使催化剂形成更多的"Mo-Ni-S"加氢活性相,提高了催化剂的加氢活性。添加氨类有机物的催化剂对蜡油具有更高的芳烃饱和活性、加氢脱硫和加氢脱氮活性。  相似文献   

18.
采用浸渍、浸渍挤条成型、共沉淀和挤条成型等方法引入Al_2O_3,制备了一系列Pt-WO_3/ZrO2/Al_2O_3(PtWZA)催化剂,以正庚烷异构化为探针反应,采用微型固定床装置评价了PtWZA的异构化性能,考察了Al_2O_3的引入方法对PtWZA催化剂异构化性能和机械强度的影响,并采用XRD、氮气吸附-脱附、Py-FTIR和颗粒强度测定仪对催化剂进行了表征。结果表明,和其他引入方法相比,采用浸渍挤条成型法引入Al_2O_3制备的Pt20WZ10A-IS催化剂具有较好的异构化性能和较高的机械强度。Al_2O_3含量对PtWZA-IS催化剂的异构化性能和机械强度有显著影响,WO_3含量对PtWZA-IS催化剂的异构化性能的影响与Al_2O_3含量有关。较为合适的WO_3和Al_2O_3含量(质量分数)为25%和10%,Pt25WZ10A-IS催化正庚烷异构化的转化率为87.93%、异庚烷选择性为92.01%,异庚烷收率为80.90%;催化剂的机械强度达到175.46N/cm。  相似文献   

19.
以Ni、W为活性组分,Al2O3为载体,制备催化剂Ni-W/Al2O3,并采用乙二醇后处理未焙烧的催化剂Ni-W/Al2O3,得到催化剂Ni-W/Al2O3-AT。通过X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、紫外拉曼光谱(LRS)、透射扫描电子显微镜(TEM)、XPS等表征方法研究催化剂的物化性质。结果表明:催化剂Ni-W/Al2O3经乙二醇后处理后,改善了载体氧化铝表面的羟基基团的分布,促使W物种以八面体配位多核聚钨酸的形态存在;并有效削弱了载体与活性金属之间的强相互作用,提高了W物种的分散度与硫化度,最终使得催化剂形成更多“Ni-W-S”加氢活性相,提高了催化剂Ni-W/Al2O3-AT的加氢活性。与催化剂Ni-W/Al2O3相比,催化剂Ni-W/Al2O3-AT对舟山石化焦化轻蜡油具有更高的加氢脱硫、脱氮与芳烃饱和性能,硫质量分数可从6 850 μg/g降至10 μg/g,氮质量分数由3 720 μg/g降至12 μg/g,双环以上芳烃质量分数可从25.8%降至3.2%。  相似文献   

20.
Ni/Al2O3-MO在裂解汽油加氢反应中的应用   总被引:9,自引:0,他引:9  
以Al_2O_3-MO为载体制备了一种新型的裂解汽油一段加氢催化剂Ni/Al_2O_3-MO,考察了催化剂的活化温度、不同镍盐前驱体、还原温度以及不同金属含量对催化剂的活性及选择性的影响。与参比剂相比,Ni/ Al_2O_2-MO催化剂具有较高的活性和选择性,经1 500 h稳定性实验后,Ni/Al_2O_3-MO催化剂的双烯加氢率仍保持在90%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号