首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A posteriori error estimation and adaptive refinement technique for fracture analysis of 2-D/3-D crack problems is the state-of-the-art. The objective of the present paper is to propose a new a posteriori error estimator based on strain energy release rate (SERR) or stress intensity factor (SIF) at the crack tip region and to use this along with the stress based error estimator available in the literature for the region away from the crack tip. The proposed a posteriori error estimator is called the K-S error estimator. Further, an adaptive mesh refinement (h-) strategy which can be used with K-S error estimator has been proposed for fracture analysis of 2-D crack problems. The performance of the proposed a posteriori error estimator and the h-adaptive refinement strategy have been demonstrated by employing the 4-noded, 8-noded and 9-noded plane stress finite elements. The proposed error estimator together with the h-adaptive refinement strategy will facilitate automation of fracture analysis process to provide reliable solutions.  相似文献   

2.
A new family of explicit single-step time integration methods with controllable high-frequency dissipation is presented for linear and non-linear structural dynamic analyses. The proposed methods are second-order accurate and completely explicit with a diagonal mass matrix, even when the damping matrix is not diagonal in the linear structural dynamics or the internal force vector is a function of velocities in the non-linear structural dynamics. Stability and accuracy of the new explicit methods are analysed for the linear undamped/damped cases. Furthermore, the new methods are compared with other explicit methods.  相似文献   

3.
This paper is a user's guide for the stand-alone explicit direct time integration package STINT/CD for structural dynamics analysis. STINT/CD uses an automatic variable time increment central difference method. The purpose, function, limitations and usage of the package are described. A FORTRAN listing of STINT/CD is given along with a sample problem which illustrates its usage and performance.  相似文献   

4.
5.
The clutter characteristics of bistatic airborne radar are more complex than those of monostatic airborne radar. The clutter spectra not only vary severely with range, but also vary with bistatic configuration. The problem of range dependence is more serious in monostatic airborne radar. In this paper, the geometry of arbitrary bistatic airborne radar configuration is firstly analysed, and a formula for Doppler frequency calculation with the variables of azimuth angle and bistatic range is deduced, which is an efficient tool for bistatic clutter analysis. Because of the severe clutter range dependence, the processing of compensation is indispensable in space time adaptive processing (STAP). However, when range ambiguity occurs, the compensation is difficult to be applied to each clutter range cell. To solve this problem, a range ambiguity resolving approach is further proposed by utilising azimuth elements in phased array. Because this approach will result in spatial degrees of freedom (DOF) loss, the overlapped subarray processing is introduced in order obtain enough spatial DOF for STAP. By doing so, the compensation for mitigating range dependence can be applied effectively to bistatic clutter.  相似文献   

6.
 The generalization of a new numerical approach with simultaneous space–time finite element discretization for viscoelastic problems developed in the papers by Buch et al. (1999) and Idesman et al. (2000) is presented for the case of the generalized viscoelastic Maxwell model. New non-symmetric variational and discretized formulations are derived using the continuous Galerkin method (CGM) and discontinuous Galerkin method (DGM). Viscoelastic behaviour described by the generalized Maxwell model is represented by means of internal variables. It allows to use only differential equations for the constitutive equations instead of integrodifferential ones. The variational formulation reduces to two types of equations with total displacements and internal displacements (internal variables) as unknowns, namely to the equilibrium equation and the evolution equations for the internal displacements which are fulfilled in the weak form. Using continuous test functions in space and time, a continuous space–time finite element formulation is obtained with simultaneous discretization in space and time. Subdividing the total observation time interval into appropriate time slabs and introducing discontinuous trial functions, being continuous within time slabs and allowing jumps across time interfaces, a more general discontinuous finite element formulation is obtained. The difference between these two formulations for one time slab consists in the satisfaction of initial conditions which are fulfilled exactly for the continuous formulation and in a weak form for the discontinuous case. The proposed approach has some very attractive advantages with respect to semidiscretization methods, regarding the possibility of adaptive space–time refinements and efficient parallel processing on MIMD-parallel computers. The considered numerical examples show the effectiveness of simultaneous space–time finite element calculations and a high convergence rate for adaptive refinement. Numerical efficiency is an advantage of DGM in comparison with CGM for discontinuously changing (e.g. piecewise constant) boundary conditions in time and for solutions with high gradients. Received 7 February 2000  相似文献   

7.
8.
We present an element residual method for obtaining an a posteriori error estimate of a finite element method and an adaptive h-refinement procedure for flows of the modified upper-convected Maxwell (MUCM) fluid with a solvent viscosity. The element residual method is applied to the Poiseuille flow to assess the accuracy of the error estimate. The adaptive h-refinement procedure based on the error estimate is applied to the flow past a cylindrical tube in a duct.The work is supported by an Australian Research Council (ARC) Grant. H. Jin was supported by an ARC Australian Postdoctoral Research Fellowship.  相似文献   

9.
A disease transmission model of susceptible-infective-recovered type with a constant latent period is analysed. The global dynamics of the disease-free equilibrium is investigated. If the basic reproduction number is greater than unity, a unique endemic equilibrium exists. Using Lyapunov functional approach, this endemic equilibrium is globally stable in the feasible region. The disease will persist (and is permanent) at the endemic equilibrium if it is initially present. The effects of loss of immunity on the dynamics of the model are analysed, and the parameters that drive the disease dynamics are obtained. Numerical simulations support our analytical results and illustrate possible behavioural scenarios of the model.  相似文献   

10.
11.
A ‘family’ of tree data structures for adaptive mesh refinement is described and details concerning the associated logic are provided. The data structures encompass triangular elements and quadrilateral elements in two dimensions and quadrilateral bricks in three dimensions. Furthermore, both linear (bilinear) and quadratic (biquadratic) element types, respectively, are developed. Representative refinement results are given for the bilinear, trilinear and biquadratic types and associated performance studies made for the refinement procedure.  相似文献   

12.
This paper introduces a computational strategy to solve structural problems featuring nonlinear phenomena that occur within a small area, while the rest of the structure retains a linear elastic behavior. Two finite element models are defined: a global linear model of the whole structure, and a local nonlinear “submodel” meant to replace the global model in the nonlinear area. An iterative coupling technique is then used to perform this replacement in an exact but non-intrusive way, which means the model data sets are never modified and the computations can be carried out with standard finite element software. Several ways of exchanging data between the models are discussed and their convergence properties are investigated on two examples. This work is supported by Snecma and is part of the MAIA-MM1 research program.  相似文献   

13.
Automating triangular finite element mesh generation involves two interrelated tasks: generatine a distribution of well-placed nodes on the boundary and in the interior of a domain, and constructing a triangulation of these nodes. For a given distribution of nodes, the Delaunay triangulation generally provides a suitable mesh, and Watson's algorithm26 provides a flexible means of constructing it. In this paper, a new method is described for automating node placement in a Delaunay triangulation by seieclive refinement of an initial triangulation. Grading of the mesh is controlled by an explicit or implicit node spacing function. Although this paper describes the technique only in the planar context, the method generalizes to three dimensions as well.  相似文献   

14.
15.
A continuous review inventory model with a time discount   总被引:2,自引:0,他引:2  
This paper presents a continuous review inventory model with a lost sales assumption. The model is unique due to the inclusion of a time discount. Whenever the supplier faces the likelihood of being out of stock, he may issue a discount to motivate customers to accept delayed deliveries and thus avoid the occurrence of lost sales. We propose a control policy with four parameters R1, Q, R2 and T where R1 and Q are the normal reorder point and quantity, respectively and R2 and T are the triggers for this time discount. During each replenishment cycle, if the on-hand inventory drops to R2 at or before T after the reorder time epoch, the time discount will be granted. A derivation as well as a solution approach for the total cost function are provided. Based on computational results, such a system with a time discount is superior to that without a time discount in terms of minimizing the total system cost. Finally, we compare the performance of the time discount and the emergency ordering approaches.  相似文献   

16.
A multiscale strategy using model reduction for frictional contact computation is presented. This new approach aims to improve computation time of finite element simulations involving frictional contact between linear and elastic bodies. This strategy is based on a combination between the LATIN (LArge Time INcrement) method and the FAS multigrid solver. The LATIN method is an iterative solver operating on the whole time‐space domain. Applying an a posteriori analysis on solutions of different frictional contact problems shows a great potential as far as reducibility for frictional contact problems is concerned. Time‐space vectors forming the so‐called reduced basis depict particular scales of the problem. It becomes easy to make analogies with multigrid method to take full advantage of multiscale information. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, an adaptive refinement procedure is proposed to be used with Discrete Least Squares Meshless (DLSM) method for accurate solution of planar elasticity problems. DLSM method is a newly introduced meshless method based on the least squares concept. The method is based on the minimization of a least squares functional defined as the weighted summation of the squared residual of the governing differential equation and its boundary conditions at nodal points used to discretize the domain and its boundaries. A Moving Least Square (MLS) method is used to construct the shape function making the approach a fully least squares based approach. An error estimate and adaptive refinement strategy is proposed in this paper to increase the efficiency of the DLSM method. For this, a residual based error estimator is introduced and used to discover the region of higher errors. The proposed error estimator has the advantages of being available at the end of each analysis contributing to the efficiency of the proposed method. An enrichment method is then used by adding more nodes to the area of higher errors as indicated by the error estimator. A Voronoi diagram is used to locate the position of the nodes to be added to the current nodal configuration. Efficiency and effectiveness of the proposed procedure is examined by adaptively solving two benchmark problems. The results show the ability of the proposed strategy for accurate simulation of elasticity problems.  相似文献   

18.
A model with nonzero rise time for AE signals   总被引:1,自引:0,他引:1  
Acoustic emission (AE) signals are conventionally modelled as damped or decaying sinusoidal functions. A major drawback of this model is its negligible or zero rise time. This paper proposes an alternative model, which provides for the rising part of the signal without sacrificing the analytical tractability and simplicity of the conventional model. Signals obtained from the proposed model through computer programs are illustrated for demonstrating their parity with actual AE signals. Analytic expressions for the time-domain parameters, viz., peak amplitude and rise time used in conventional AE signal analysis, are also derived. The model is believed to be also of use in modelling the output signal of any transducer that has finite rise time and fall time.  相似文献   

19.
A multi-scale computational method using the homogenization theory and the finite element mesh superposition technique is presented for the stress analysis of composite materials and structures from both micro- and macroscopic standpoints. The proposed method is based on the continuum mechanics, and the micro–macro coupling effects are considered for a variety of composites with very complex microstructures. To bridge the gap of the length scale between the microscale and the macroscale, the homogenized material model is basically used. The classical homogenized model can be applied to the case that the microstructures are periodically arrayed in the structure and that the macroscopic strain field is uniform within the microscopic unit cell domain. When these two conditions are satisfied, the homogenization theory provides the most reliable homogenized properties rigorously to the continuum mechanics. This theory can also calculate the microscopic stresses as well as the macroscopic stresses, which is the most attractive advantage of this theory over other homogenizing techniques such as the rule of mixture. The most notable feature of this paper is to utilize the finite element mesh superposition technique along with the homogenization theory in order to analyze cases where non-periodic local heterogeneity exists and the macroscopic field is non-uniform. The accuracy of the analysis using the finite element mesh superposition technique is verified through a simple example. Then, two numerical examples of knitted fabric composite materials and particulate reinforced composite material are shown. In the latter example, a shell-solid connection is also adopted for the cost-effective multi-scale modeling and analysis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
This paper introduces a new modeling method suitable for the simulation of shell fracture under impact. This method relies on an entirely meshless approach based on the smoothed particle hydrodynamics (SPH) method. The paper also presents the SPH shell formulation being used as well as the different test cases used for its validation. A plasticity model of the global type throughout the thickness is also proposed and validated. Finally, in order to illustrate the capabilities of the method, fracture simulations using a simplified fracture criterion are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号