首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沈哲  张禹  王宁 《一重技术》2022,(1):12-15
分析自然界中蛇的运动模式,根据蛇的运动机理,确定并设计仿蛇软体机器人的结构.根据机器人结构设计制作部件模具,浇筑完成机器人的制作.通过实验验证多运动模式仿蛇软体机器人设计方案的可行性.  相似文献   

2.
轮足式仿生软体机器人设计与运动分析   总被引:1,自引:0,他引:1  
基于自然界中弯曲蠕虫的运动原理,借鉴其结构特点,设计一种双腔结构的轮足式仿生蠕动软体机器人,利用硅橡胶材料的超弹性特征,通过在多气囊结构中充气挤压变形使软体机器人本体结构发生弯曲,周期性的充放气实现软体机器人的蠕动运动。引入轮足式设计,将软体机器人软体基体的蠕动运动转变为车轮的旋转运动,加快蠕动型机器人的运动速度,通过向软体基体双腔充入不同气压,实现大角度转弯。分析了蠕动机器人周期性的直线运动和转向运动过程,研究了机器人运动过程中的非线性力学特性,测试了软体基体双腔充气状态下变形量与气压的关系以及单腔状态下转弯角度与气压的关系,分析了软体机器人的最快行进速度和最小转弯半径,确定了软体机器人的运动性能。  相似文献   

3.
为研究基于蠕动原理的仿生爬行机器人运动,以气动弯曲驱动器和伸长驱动器为机器人主体,设计了一种软体爬行机器人。针对爬行机器人在平面及管道中的运动,根据爬行机器人的力学特性和运动过程中摩擦力与驱动力之间的关系,分析了爬行机器人实现爬行运动的条件,提出了爬行机器人驱动方式。通过实验,验证了所提出的驱动方式能够实现软体爬行机器人的移动,为今后软体爬行机器人的研究及应用提供了基础。  相似文献   

4.
无缆磁控微型机器人由于其尺寸小、质量轻,在生物医疗、微操作领域等都有着广阔的应用前景。设计一种十字叉形磁控微型软体四足机器人,采用水母模式、螺旋桨模式实现机器人的水下运动。首先分别对磁控四足机器人的水母模式和螺旋桨模式进行动力学分析,然后通过静态特性和动态特性分别对两种模式进行仿真与试验的对比分析,研究磁场强度与弯曲特性的关系、水母模式拍打幅度、频率与速度的关系,螺旋桨模式步长与圆锥素线角、频率与速度的关系等。在此基础上,通过设计控制信号分别在两种模式下实现在水下的垂直向上、悬停、水平移动等多个动作,并实现简单路径跟踪试验,磁控微型四足水下机器人的仿真与试验为微型机器人的应用提供了新思路。  相似文献   

5.
针对多运动模式机器人单个可变形腿动力学问题进行系统研究,利用Kane动力学分析方法,建立了机器人单个可变形腿的逆动力学模型;借助Maple软件进行仿真,结果表明所建模型的正确性和有效性,可用于单个可变形腿运动控制器的设计;分析了关节转动速度和转动加速度对驱动力矩产生的影响,并分析了各关节驱动力矩中惯性力矩、向心力矩、哥氏力矩及重力矩所占的比例,分析结果有助于进一步规划机构的运动,优化机构设计和选择适当功率的电机。  相似文献   

6.
为实现微型机器人无缆驱动,设计一种基于磁弹性复合材料的磁控微型软体爬行机器人,通过三维亥姆霍兹线圈构建变换空间磁场,控制磁性材料产生磁力矩,并耦合机器人重力、摩擦力及自身的弹性变形,使得机器人实现多个连续的姿态变换,完成爬行动作。介绍微型软体爬行机器人结构和制作流程,建立机器人准静态力平衡方程,利用Abaqus有限元仿真和试验对比分析了机器人弯曲变形、接触面摩擦、爬行步长、转向等运动特性,在此基础上建立机器人爬行动作的速度模型,研究控制信号频率与幅值对机器人爬行速度的影响,并最终实现爬行机器人的路径规划控制。试验和仿真结果表明,该机器人能实现在xy平面内任意方向的爬行动作,为进一步揭示磁控微型机器人的运动特性及规律奠定了基础。  相似文献   

7.
软体机器人研究现状综述   总被引:20,自引:3,他引:20  
软体机器人由柔韧性材料制成,可在大范围内任意改变自身形状、尺寸在侦察、探测、救援及医疗等领域都有广阔的应用前景。综述软体机器人结构类型、驱动方式、物理建模技术和加工制造方法等问题。其结构模仿生物的静水骨骼结构和肌肉性静水骨骼结构,采用形状记忆合金、气动、电活性聚合物等物理驱动方式或将化学能转化为机械能的化学驱动方式。软体机器人建模困难,主要采用试验分析或使用超冗余度机器人建模方法近似研究。制造中的问题包括柔性本体制造、柔性致动器制造以及可伸展电路的制造,采用形状沉积、激光压印、智能微结构等新型制造工艺。软体机器人是一种全新的机器人,对它的研究刚刚起步,涉及材料科学、化学、微机电、液压、控制等多学科,从材料、设计、加工、传感到控制、使用均存在着一系列问题需要继续研究。  相似文献   

8.
针对管道机器人运动形式单一的问题,设计了一种具有多种运动模式并能进行切换的轮式管道机器人,给出了管道机器人的总体方案,设计了管道机器人的自适应变径机构、车轮变位机构和转弯机构,建立了管道机器人轮式行走时的运动模型和力学模型,并以此为基础对机器人主体结构进行优化设计。  相似文献   

9.
软体机器人是由柔性材料制成的新型机器人,具有刚度小、柔顺性高等特点,其运动性能、应用环境范围主要取决于驱动方式。目前的驱动方式主要有流体驱动、线驱动、形状记忆合金驱动、电活性聚合物驱动、混合驱动等,其中流体驱动由于其形式的多样性、响应的快速性、高承载性而受到青睐。根据流体驱动介质的不同,将软体机器人流体驱动方式分为气压驱动、液压驱动、微流体驱动等,同时进一步根据气压驱动的结构类型将其分为纤维编织型、螺旋型、网格型、折纸型和特殊型等;介绍了目前流体驱动的软体机器人制造技术,分析了软体机器人流体驱动方式面临的一些问题,并提出了其未来发展方向。  相似文献   

10.
无系留大负载软体抓持机器人研究发展综述   总被引:3,自引:2,他引:1  
受软体材料、制造工艺、核心部件的限制,大多数的软体机器人负载能力较低,不能随机携带控制和能量硬件系统,不得不通过管路和线路系留在外部硬件上,这严重限制了软体机器人的作业范围和应用领域。在众多的软体机器人中,软体抓持机器人发展较快,主要包括两类:一类是软体末端,主要配合机械臂、水下机器人、无人机、人体等完成抓取任务;另一类是以抓持功能为主兼具位姿变换功能的运动软体夹持器,实现了自身抓持结构特性与运动功能的巧妙融合。针对软体机器人技术领域无系留与大负载的共性话题,聚焦应用前景广阔的软体抓持机器人,从无系留驱动与系统集成、负载力提升等方面分析了软体抓持机器人发展过程中所取得的显著成果和存在的不足之处,系统总结了无系留大负载软体抓持机器人研发技术和面临的主要挑战,为软体抓持机器人发展方向与性能提升提供参考,推动软体机器人进入实际应用领域。  相似文献   

11.
软体机器人是一类新型仿生机器人,具有环境适应性强、运动灵活和本体柔软性等突出优点,在空间探索、灾害救援、医疗健康等诸多领域拥有广泛的应用前景。软体机器人主要由柔性本体材料和智能驱动/传感材料构成。聚焦软体机器人的驱动技术,首先介绍了以气/液流体弹性体材料为主体的流体驱动模式;然后,对气液相共同作用下的混合气液驱动技术进行介绍;接着,围绕现有研究较广泛的电驱动技术,重点分析了电动液压技术在软体机器人领域的最新进展及应用;最后,对电/磁/光/热驱动技术及其典型应用进行了分析和讨论;同时对未来软体机器人发展所面临的困难与机遇进行了展望。  相似文献   

12.
自重构模块化机器人的运动空间及自变形算法   总被引:2,自引:0,他引:2  
设计一种新颖的同构式模块化自重构机器人系统,该自重构机器人系统的基本模块由1个中心体和6个旋转面组成.根据模块的运动特征及棋盘规则的约束,以Oxy平面为例,分4种情况,研究并归纳出该自重构模块化机器人系统的可能运动空间.利用当前构型重心和目标构型重心之间距离的函数作为驱动模块运动的启发信息,根据每个模块自身的可能运动空间,并结合模块对目标位置的逐步填充方式共同完成系统的自重构运动规划.为了能快速完成该类自重构模块化机器人的自变形任务,定义模块的优先运动系数,规定模块的填充原则,将逐步填充式自变形算法进行一定优化,得出该类自重构模块化机器人系统的自变形方法.最后给出一个16模块自重构机器人系统的变形仿真实例,证明上述方法的可行性.  相似文献   

13.
针对传统的刚性机器人存在适应性差、灵活性低、操作和携带不便等问题,介绍了软体机器人在康复训练领域的应用前景。首先,依据软体机器人的来源,对其所使用的材料、驱动技术、传感和控制等关键技术进行介绍和分析;其次,归纳目前软体机器人在人体不同部位执行康复训练任务的研究和应用现状;再次,从材料、结构和控制等方面介绍了康复训练软体机器人所面临的问题;最后,对康复训练软体机器人的未来发展和应用进行展望,以期为康复训练软体机器人的后续研究提供参考。  相似文献   

14.
15.
在国外自重构机器人研究的基础上,设计开发了一种同构阵列式的模块化自重构机器人M-Cubes。此模块化机器人结构紧凑、运动灵活,模块间通过搭建成脚手架结构进行运动,可以组合成任意的构型。文章介绍了模块的脚手架结构运动方式,进行了运动学分析,推导出模块运动时的变换矩阵,并进行了逆运动学分析,说明了此脚手架结构的运动原理。在仿真平台上给出了一个4×2×2矩形阵列模块的平移仿真示例,验证了模块结构和运动方式的有效性。  相似文献   

16.
基于流体驱动的软体机器人目前已得到广泛的研究与应用。根据其发展现状,对流体驱动方式进行了综合对比,总结了软体机器人在结构设计、材料制作、试验分析中的方法,并对其面临的问题、未来发展的挑战进行了分析。  相似文献   

17.
仿照蠕虫运动机理,利用自主研发的径向膨胀和轴向伸缩软体驱动器,研制了一种蠕动式气动软体管道机器人。研究了两种驱动器的结构设计和工艺流程;并进行了静力学实验,获得了驱动器静力学特性;依据轴向伸缩软体驱动器的形变原理,建立了机器人的运动学模型,获得了在不同气压、频率和负载情况下机器人的运动性能。结果表明,管道机器人具有较好的灵活性和适应性,可在一定直径范围的管道内自由爬行,爬行最大运动速度可达4.64 mm/s,负载能力为1000 g。  相似文献   

18.
基于弹性、软质材料的软体机器人变形能力强、人-机-环境共融性好,在工业、医疗、家庭服务等众多领域具有良好的应用前景.软体机器人是本体、驱动、感知等高度集成的新型机电一体化智能系统.软体机器人呈现的诸多新特征给机器人领域的制造、驱动、建模、感知及控制等技术带来了全新的挑战.软质材料3D打印技术与装备的快速发展为软体机器人...  相似文献   

19.
针对海上搜救和海上勘探的需求,设计一种气动变腔驱动器软体机器人模拟金枪鱼推进运动,可有效增加推进效率、减少能耗.本文研究金枪鱼尾部的推进机理,通过UG完成了软体仿金枪鱼机器人的尾部、前身及平衡鳍结构进行设计,对结构进行分析,简化尾部的力学模型,基于Yeoh本构模型在ANSYS中对尾部软体驱动器和软体仿金枪鱼机器人模型进...  相似文献   

20.
空间站内部具有空间狭小、仪器精密的环境特点,检修中广泛采用的刚体机器人或机械臂,存在环境顺从性差、刚性冲击大等局限性.提出一种气压驱动的仿"藤蔓"生长型软体机器人,其生长通过内部气压驱动的薄膜尖端外翻实现,并利用线驱动转弯关节实现机器人的尖端转向,这种新型的运动方式不仅使机器人具备了更加优越的运动性能,也实现了其主动控...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号