首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
主要对原料油中噻吩、苯并噻吩、硫醚等类型硫在催化裂化过程中的转化机理和路径去向进行了综述和分析,并与催化汽油中类型硫的标定结果进行了对比;讨论了催化操作条件、催化剂类型及原料油组成对类型硫的裂化脱硫过程的影响,对于两种主要脱硫技术吸附脱硫和加氢精制进行了探讨。噻吩在催化剂B酸中心易形成β碳正离子并进一步转化为不同的中间产物,再经过氢转移反应和裂化反应开环裂化脱硫生成H 2S进入气相,或生成烷基噻吩等硫化物主要进入汽油馏分段,苯并噻吩和二苯并噻吩比噻吩更难开环裂化,其脱硫产物主要进入柴油馏分段。较低的反应温度、较高的剂油比、较长的反应时间、晶胞参数高、酸密度大的催化剂及较多的供氢剂有利于脱除类型硫。  相似文献   

2.
在固定流化床装置上,采用USY-Cat和V-USY-Cat催化剂,考察了苯并噻吩与四氢萘以不同比例混合进料在催化剂作用下的转化路径和硫分布。结果表明,苯并噻吩在催化裂化过程中主要发生氢转移-裂化、缩合、烷基转移和歧化反应。纯苯并噻吩很难开环裂化脱硫,其气体硫、液体硫和焦炭硫的摩尔选择性分别为0.45%、49.71%和49.84%。四氢萘的加入改变了苯并噻吩反应路径的选择性,使气体硫的摩尔选择性略有增加,焦炭硫的摩尔选择性下降到3.18%。催化剂的酸性质对产物硫分布也有影响,酸密度越高,越有利于气体硫的生成;V的加入提高了USY-Cat催化剂的L酸/B酸比,使焦炭硫的选择性上升。  相似文献   

3.
采用固定流化床实验装置,以噻吩、2-丁基噻吩和苯并噻吩为模型化合物,研究了不同结构的噻吩类硫化物在催化裂化条件下的反应特性和产物硫分布规律。结果表明:噻吩和苯并噻吩的转化率均较低(小于20%),产物主要分布在焦炭和液体中,很难发生裂化脱硫反应;2-丁基噻吩具有较高的反应活性,主要发生脱烷基、侧链裂化和裂化脱硫反应,气体硫的选择性达到28%左右。对于Y型分子筛催化剂,噻吩类硫化物的产物收率和硫分布选择性均与转化率呈很好的线性关系。  相似文献   

4.
一、序言流化催化裂化是炼油厂生产汽油及中间馏份的主要途径。在石油炼制过程中,原油中的硫通过流化催化裂化装置。脱硫并不是流化催化裂化的基本目的,但随着石油裂化的进程,可以脱除原油中50%的硫。原油中的硫在流化催化裂化中究竟到那里去了呢? 对直馏粗柴油的分析,可知硫的分布随着转化程度而变化。  相似文献   

5.
在固定流化床(FFB)实验装置上考察了烟气脱硫脱氮吸附剂上的硫在催化裂化反应过程中的分布和形态以及吸附剂的催化裂化反应性能。研究结果表明:在催化裂化反应环境中吸附在催化剂上的硫有80%以上发生脱附,并分布在液体产物、裂化气、预流化水以及雾化汽提水中,分布比例分别为2.6%, 41.5%,27.2%,2.8%;液体产物中的硫主要为烷基噻吩、噻吩、硫醇和硫醚,裂化气中的硫为H2S,水中的硫以SO42-,SO32-,S,S2O32-,S2-等形态存在;吸附剂对烃类的催化裂化反应性能没有明显影响。  相似文献   

6.
在小型固定流化床(FFB)装置上以二苯并噻吩(DBT)-十六烷体系为原料,研究DBT在催化裂化过程中的转化规律。结果表明,在反应温度500 ℃、剂油质量比6、空速10 h-1的条件下,DBT的转化率为45%左右。在DBT参与的反应中,烷基化反应占主要地位。DBT转化为甲基苯并噻吩的比例最高,其次为C2~C5的烷基二苯并噻吩。DBT-十六烷反应体系的硫90%左右分布在催化裂化液体产品中,少量反应生成硫化氢,少量进入焦炭中。DBT的加入降低了十六烷的转化率,促使干气生成,汽油产率减少,柴油产率增加,焦炭产率显著增加。  相似文献   

7.
催化裂化油浆是催化裂化过程中沸点大于350℃的未转化烃类,大部分催化裂化油浆中含有大量的饱和烃,接近或者超过原料油中饱和烃的组成,而且大部分是正构烷烃,因此这部分饱和烃是很好的裂化原料。探讨了部分能继续裂化的饱和烃类在催化裂化过程中未充分转化的原因:正构烷烃难以裂化、催化剂表面酸性中心数量和强度的影响、催化剂孔道扩散的限制,竞争吸附的影响,烃类之间的转化等。其中烃类转化的影响还需要实验和理论分析来证明。  相似文献   

8.
罗鹏 《石油化工应用》2011,30(6):104-106
以单提升管两段再生催化裂化装置为考察对象,就反应温度对重油裂化转化率、生焦率、热裂化及重油中硫转移进行分析。  相似文献   

9.
采用全二维气相色谱-飞行时间质谱(GC×GC-TOFMS)方法对渣油接触裂化液体产物中的含硫化合物进行分子水平表征,鉴定出苯硫醚、苯硫酚、噻吩类、苯并噻吩类、二氢苯并噻吩类、二苯并噻吩类、萘噻吩类、四氢二苯并噻吩类、苯并萘噻吩类、菲噻吩类、苯并二噻吩类及噻喃类等含硫分子。通过GC×GC-TOFMS的族分离和瓦片效应重点研究了渣油接触裂化液体产物中的噻吩类、苯并噻吩类及二苯并噻吩类化合物的碳数分布,并对油品加工过程中较关注的C_2烷基取代二苯并噻吩类化合物进行了单体分子识别。结合渣油接触裂化工艺考察了接触剂活性对渣油接触裂化液体产物中的含硫化合物的分子类型分布及碳数分布的影响,结果表明,同种渣油在不同接触剂作用下接触裂化的液体产物中含硫化合物的分子类型分布基本相似,但含量分布存在明显差异。对于碳数分布,以苯并噻吩类为例,采用强微反活性的接触剂时,液体产物中的低碳数烷基(C_1~C_3)取代苯并噻吩的分布占优势,而采用弱活性接触剂时,产物中较高碳数烷基(C_4~+)取代苯并噻吩的分布占优势。  相似文献   

10.
催化裂化汽油的下行床催化转化   总被引:4,自引:0,他引:4  
李强  魏飞  罗国华  王雷  张琪皓 《石油化工》2004,33(5):402-406
以循环下行床为反应器,催化裂化汽油为原料,在工业催化裂化(FCC)催化剂和催化裂解(DCC)催化剂作用下,研究了催化裂化汽油的催化转化过程。实验结果表明,在下行床反应器中,催化裂化汽油中的烯烃能显著降低,主要转化为低碳烯烃产品,同时得到富含芳烃的液体产品,副产干气和焦炭量很低。催化裂化汽油在FCC催化剂和DCC催化剂上表现出不同的反应机理。FCC催化剂孔道大,可以发生双分子裂化反应和单分子裂化反应,而DCC催化剂孔道小,以单分子裂化反应机理为主,同时DCC催化剂低碳烯烃选择性更高。  相似文献   

11.
硫化氢生成模拟实验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
利用封闭体系的高压釜实验装置进行硫化氢生成的模拟实验已有报道,但硫化氢的生成量很少或很难检测到。因此研制了开放体系的石英管模拟方法,探讨了硫酸钙、硫磺、黄铁矿分别与正己烷反应生成硫化氢以及低成熟泥灰岩生烃模拟过程中硫化氢的生成特征。结果表明,硫酸钙与正己烷在高温下可以发生反应,但反应比较困难,且硫化氢的生成量较少;单质硫与正己烷在较低温度下即可发生反应,并可生成大量的硫化氢;黄铁矿与正己烷可以发生反应并生成大量的硫化氢,主要是黄铁矿高温分解形成的单质硫与烃类反应的结果。低成熟泥灰岩生烃模拟过程中能够生成大量的硫化氢与其含有较多的黄铁矿有关。硫化氢生成的成功模拟为其成因机理研究提供了重要的实验手段和依据。   相似文献   

12.
热采过程中硫化氢成因机制   总被引:7,自引:0,他引:7  
为了防范稠油油藏注蒸汽开采过程中井口产出硫化氢所造成的安全隐患,增强热采油井安全生产水平,亟需对稠油热采过程中硫化氢的来源及成因机制开展相关实验研究。对辽河小洼油田洼38区块的岩心、原油和产出水3种不同物质开展了含硫量测定、硫同位素分析和H2S生成热模拟实验。实验研究结果表明:稠油热采中生成的硫化氢主要来源于岩心和稠油;在硫同位素分馏过程中,形成硫化物(H2S)的δ34S反映了硫酸盐热化学还原过程中硫在较高温度下的分馏特征;硫化氢的生成机理主要为高温高压酸性环境下稠油水热裂解和硫酸盐热化学还原之间的交互作用。  相似文献   

13.
The use of advanced FCC catalysts and additives to reduce sulfur in gasoline remains the preferred option to refiners because of its economic and operation incentives. The performance of a commercial sulfur-reducing additive blended with a fresh RE-USY catalyst was assessed in a microactivity (MAT) unit using Arabian Light vacuum gas oil (VGO). The additive was evaluated at different concentrations (0-15 wt%) in terms of sulfur reduction capability and its effect on product yield structure, mainly gasoline. At 5 wt% additive, the results showed a 14 wt% reduction in total gasoline sulfur with minor effect on catalytic activity and product selectivity. Minimal reduction capability was observed towards benzothiophene (BT), which is difficult to crack and remove under cracking conditions. Upon increasing additive concentration to 10 wt%, total sulfur was reduced to 21 wt% compared to 27 wt% reduction at 15 wt% additive. At this additive concentration, aromatic sulfur compounds mainly C4-thiophenes and a portion of BT were cracked to tetrahydrothiophene, or thiophene, which were subsequently cracked to H2S and light gases.  相似文献   

14.
辽河油田杜84块超稠油由蒸汽吞吐转为蒸汽辅助重力泄油(SAGD)开发后,产生了较高浓度的H2S,导致脱硫设施投入和油气处理成本增加。通过原油、伴生气、地层水和储层矿物地球化学测试分析,H2S产量与原油含硫量、地层水SO42-浓度无明显相关性,而与储层中黄铁矿含量一致性强,黄铁矿中的硫属于生物来源,同位素范围与原油基本一致,起源于原油稠化阶段,大量形成于稠油热采阶段。高温高压热模拟实验表明,注蒸汽热力采油过程中,除含硫有机质热裂解(TDS)和硫酸盐热化学还原反应(TSR)外,黄铁矿氧化分解也是H2S形成途径之一,当注入低矿化度蒸汽对地层水稀释后,SO42-浓度下降,黄铁矿分解是H2S的主要生成途径,H2S的生成和分布受控于油藏地质条件、开发方式、开发时间和受热温度。   相似文献   

15.
高含硫气藏物质平衡方程研究   总被引:1,自引:0,他引:1  
高含硫气藏是一类特殊的气藏,其物质平衡方程与常规气藏相比存在着较大差别。常规气藏物质平衡方程没有考虑硫沉积现象,因此不能完整地描述高含硫气藏的开发动态。从气藏物质平衡基本原理出发,在考虑硫沉积的基础上,分别针对定容、封闭和水驱气藏的情况,进行了完整地推导,得到了高含硫气藏的物质平衡方程。  相似文献   

16.
高含硫裂缝性气藏储层伤害数学模型   总被引:4,自引:2,他引:4  
在高含硫裂缝性气藏气体开采过程中,地层压力不断降低,导致硫微粒在气相中的溶解度逐渐减小,在达到临界饱和态后从气相中析出,并在储层孔隙及喉道中运移、沉积,导致地层孔隙度和渗透率降低。地层压力的降低导致裂缝逐渐闭合,也会导致地层孔隙度和渗透率的降低,从而影响气井的产能和经济效益,严重时可导致气井停产。针对高含硫裂缝性气藏复杂渗流特征,基于空气动力学气固理论描述硫微粒在多孔介质中的运移和沉积,建立了一个全新的、能够综合描述多孔介质中硫微粒的析出、运移、沉积、堵塞以及应力敏感的高含硫裂缝性气藏储层伤害数学模型,并以L7井为例进行了实例分析。研究结果表明:在定产量生产条件下,硫沉积对气井生产动态的影响主要表现为气井的稳产时间缩短及气井产量在递减期内的递减速度加快。  相似文献   

17.
彭阳油田是鄂尔多斯盆地新探明的低H2S含量的油田,其主力产层为侏罗系延安组,原油伴生H2S含量最高为0.115%,明确H2S成因机制对于油田合理开发及安全生产具有重要意义。基于储层硫化物及油田水硫同位素的系统分析,预测了侏罗系延安组原油伴生H2S的成因。延安组主要发育集块状、斑点状、斑块状、星点状等黄铁矿类型,其δ34S值为-1.9 ‰~10.1 ‰,其中,斑块状、集块状黄铁矿为沉积早期快速结晶成因,斑点状、星点状黄铁矿为硫酸盐还原菌还原作用成因。石膏的δ34S值在16.8 ‰~17.7 ‰,为后期成岩阶段的产物,其并非H2S的硫元素来源。油田水的δ34S值较高,平均为37.9 ‰,这主要是由于硫酸盐还原菌还原作用消耗地层水中的32S,使水体相对富集34S。黄铁矿后期溶解和硫酸盐还原菌还原有机硫化物均可释放SO42-,使侏罗系油田水具有较高的SO42-浓度,为H2S的生成提供了充足的物质基础。侏罗系地层水的矿化度、pH值及地层温度等物理化学条件均利于硫酸盐还原菌的生存,为硫酸盐还原菌还原作用提供了适宜的反应场所。综合分析认为,彭阳油田侏罗系原油伴生H2S为硫酸盐还原菌还原成因。  相似文献   

18.
通过调变催化剂中V的价态,借助X射线光电子能谱(XPS)分析、小型固定床和中型提升管装置实验,开发了以自制催化剂c为基础、再生斜管部分增加H2还原预处理器的催化裂化(FCC)新工艺。催化剂经H2还原预处理后,其所含V由5价态降为4价、3价,甚至更低价态,在催化反应中可与氧化态硫接触反应,从而降低FCC汽油硫含量。经H2还原预处理的自制催化剂c(V质量分数0.6%)的催化脱硫效果显著,适宜的H2预还原温度为550℃,预还原时间为20 min。采用自制催化剂c,在H2预还原温度650℃、还原时间20 min、H2流量40 L/h、反应温度500℃、再生温度690℃、剂/油质量比6的条件下,新工艺的FCC汽油S质量浓度由880 μg/mL降至515 μg/mL。  相似文献   

19.
奈曼凹陷的非烃流体主要指 CO2,H2S 和 N2。 通过伴生气组分分析,结合区域构造发育史、非烃流体含量及碳同位素分析资料,对奈曼凹陷非烃流体成因、进入油藏时间、保存及分布的控制因素进行了深入探讨。研究认为:奈曼凹陷 CO2 和 H2S 均来自幔源成因岩浆喷发,先于烃类进入储层;CO2 的富集程度与地层水中的 HCO3- 浓度呈正比;H2S 性质不稳定,目前以痕量 H2S、含硫有机化合物及黄铁矿结核的形式存在,H2S 和含硫有机化合物的富集程度与 SO42- 浓度呈正比;N2 来自大气成因,燕山晚期进入储层,浅部地层及浅层断裂附近 N2 富集。 砂体的展布特征控制非烃流体的平面展布规律,泥岩厚度及泥岩与砂岩的配置关系控制非烃流体的保存条件。该研究成果为奈曼凹陷下一步油气勘探部署提供了一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号