首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
测定了不同溶胀时间下胜利煤、H煤和神华煤在九江循环溶剂中的的溶胀度,研究了这三种煤在常压下溶胀动力学行为,胜利煤、神华煤和H煤的平衡溶胀度(溶胀4 h)分别为1.068,1.054和1.162,胜利煤和神华煤约35 min达到溶胀平衡,H煤约20 min即达到溶胀平衡,开发了一种新的溶胀动力学模型--吸附溶胀动力学模型,按二级动力学方程对煤粒的溶胀行为进行描述,并利用文献查得的Suuberg法动力学方程分析可知,胜利煤、H煤和神华煤在九江溶剂中的扩散主要是Case-Ⅱ扩散,经比较可知,吸附溶胀法较Suuberg法能更好地描述煤的溶胀行为.  相似文献   

2.
神华煤在有机溶剂中溶胀动力学的研究   总被引:8,自引:2,他引:6  
研究了不同温度( 4 0℃~1 2 0℃)下神华煤在有机溶剂N,N-二甲基甲酰胺、四氢萘和循环油中的溶胀动力学.结果表明:随温度升高,神华煤在有机溶剂中的溶胀速率在增大,但在极性溶剂N,N-二甲基甲酰胺中的溶胀速率远大于在非极性溶剂四氢萘中的溶胀速率;神华煤的溶胀行为符合一级反应动力学方程;神华煤在三种溶剂中的活化能均小于1 0 k J/mol,表明在溶胀过程中,其速度由溶剂分子在煤中的扩散所控制.  相似文献   

3.
针对依兰煤的溶胀特性进行了初步研究,考察了不同试剂、温度、时间、粒度和浓度等因素对依兰煤溶胀度的影响,并对溶胀煤进行了激光粒度分析和扫描电镜分析。  相似文献   

4.
对不同溶胀时间、不同溶剂、矿物质、预处理和金属无机盐等实验条件下鑫源低阶烟煤的溶胀行为和溶胀动力学进行了研究.结果表明,随着时间的延长,溶胀率逐渐增大,48 h溶胀基本达到平衡,溶胀特征是典型的slow-climbing-type溶胀;煤在混合溶剂中的溶胀率大于单一溶剂中的溶胀率,在极性溶剂中的溶胀率大于非极性溶剂中的溶胀率;脱除矿质元素后,煤溶胀率增大;溶胀、酸洗和碱洗使煤溶胀率增大,烘干使煤溶胀率减小;溶胀动力学表明,该煤的溶胀行为符合一级反应动力学方程,在THN和吡啶溶剂中的表观活化能均小于20 kJ/mol,这与煤中范德华力的破坏相对应,溶胀机制是由Case-Ⅱ扩散控制的.  相似文献   

5.
侯丽红  申峻  李伟  凌开成 《现代化工》2011,31(Z1):38-42
综述了煤溶胀技术的研究进展,着重从溶胀机理、煤溶胀度的影响因素、煤中氢键与溶胀率关系、溶胀动力学及溶胀煤的表征分析等几个方面论述了溶胀技术在煤科学中的研究进展。  相似文献   

6.
神府煤溶胀特性研究   总被引:8,自引:0,他引:8  
研究了苯胺溶剂在不同时间、不同煤/溶比和不同温度等实验条件下对神府煤的溶胀,并用扩散理论对煤的溶胀过程进行了描述.结果表明,在溶胀时间为2h,煤/溶比为0.05,温度为80℃的溶胀条件下,神府煤在苯胺中的平衡溶胀度达到最大.溶胀动力学表明,煤的溶胀是受CaseⅡ扩散控制为主的过程.  相似文献   

7.
以煤溶胀机理、氢键等为基础,从热力学和动力学方面综述了煤溶胀的本质,讨论了溶剂性质、氧化、温度、煤粉粒度及热处理对溶胀动力学的影响。结果表明:溶胀过程中,表观活化能和速率常数不仅与溶剂分子的空间属性有关,还受溶剂分子形状的影响;混合溶剂的协同效应极大地提升了溶胀速率,增大了表观活化能;抽提煤的干燥条件不同及煤经过氧化后,溶胀机理均会发生明显改变。最后详细介绍了煤溶胀技术对煤分子结构的影响及在煤液化方面的应用。  相似文献   

8.
郭靖  马凤云 《煤化工》2014,(2):32-35
在自然和微波条件下,对五彩湾煤进行溶胀处理,进行煤质、电镜、热解、煤的结构-化学指数分类、加氢液化产率和液化残渣热解的分析。实验结果表明:五彩湾煤自然溶胀煤样和微波溶胀煤样的层状和裂纹显著增加,失重量明显增大。煤加氢液化测试结果表明,在氢初压6.0 MPa、溶煤比1.75:1、反应温度450℃和反应时间60 min条件下,气产率由原煤的9.7%,降低到两种溶胀煤均在3.4%左右;油产率由原煤的55.2%,提高到自然溶胀煤的70.1%和微波溶胀煤的74.0%;转化率由原煤的76.8%,增加到自然溶胀煤的82.1%和微波溶胀煤的84.8%。可见,经过溶胀处理,煤加氢液化效果显著。  相似文献   

9.
以煤溶胀机理、溶胀动力学等为基础,综述了溶剂性质、煤阶、氧化、温度、预处理、溶胀时间、水分、煤粉粒度等对煤溶胀的影响。结果发现:溶剂的供电子数目(EDN)、溶剂碱性、溶剂类型对煤的溶胀有不同的影响。煤阶对煤的溶胀影响较大,表现在随着C的增多,溶胀度也在增大,但当C含量大于85%时,溶胀度急剧降低。氧化煤易于溶胀。升高温度和预处理均有利于煤的溶胀。煤粉粒度越小溶胀度越好。脱除煤中的矿物质后有利于提高煤的溶胀度,但增加幅度不大。最后详细介绍了煤溶胀技术在研究煤分子结构、煤热解、煤液化方面的应用。  相似文献   

10.
采用NMP/CS(2体积比1︰1)混合溶剂,在微波辐射下对五彩湾煤进行溶胀处理,并将原煤和微波溶胀煤样进行对比表征和加氢液化实验,考察了液化反应温度、反应气氛、溶胀剂对液化效果的影响。结果表明:微波溶胀后,煤样孔隙结构显著增加,结构发生变化。在液化条件是温度450℃、氢初压6.0 MPa、溶煤比1.75︰1和反应时间60 min,油产率和转化率分别是原煤55.02%和76.76%,微波溶胀煤74.03%和84.78%。  相似文献   

11.
讨论了煤炭直接液化过程中溶剂的特点、作用及质量要求,煤液化溶剂具有一般溶剂的功能,同时还具有良好的供氢和传递氢的功能特点,起到溶解、分隔煤裂解生成的自由基的作用,溶剂必须具有一定的分子结构和分子大小。初步讨论了表征煤液化循环溶剂供氢性的指标,指出普通溶剂如四氢萘和二氢萘等部分饱和的芳香化合物可直接用作煤液化溶剂,多环芳烃含量较高的煤焦油和石油系重质油,经过预加氢处理提高溶剂的供氢性后,可作为煤液化过程的起始溶剂或替代溶剂。  相似文献   

12.
本文研究了新疆伊犁煤在甲苯、甲醇、四氢呋喃(THF)、N-甲基吡咯烷酮(NMP)和陆梁原油不同溶剂下的溶胀行为,考察了煤预处理温度、不同溶剂、煤/溶剂体积比、溶胀时间对煤溶胀度的影响。结果表明:经过110℃真空干燥预处理煤样的溶胀度大于经过50℃真空干燥预处理煤样的溶胀度;相同条件下,NMP的溶胀度最大;煤/溶剂体积比越大,煤的溶胀度越小;溶胀24h煤样的溶胀度同溶胀60h煤样的溶胀度变化不大。  相似文献   

13.
为研究神华煤反应初期动力学行为,在容积180 m L搅拌高压釜中,使用循环溶剂为供氢溶剂,利用"863"催化剂进行煤直接液化反应。采用传统的集总反应动力学模型,将原料煤分为快反应组分,慢反应组分和惰性组分3部分,并计算各级反应动力学活化能。结果表明:快反应煤向油、气和沥青烯组分(PAA)转化的总反应活化能为279.74 k J/mol,慢反应煤向PAA转化的活化能为57.80k J/mol。在开始的4 min内,煤的转化率及PAA的产率由于煤的热解而迅速增加;在后续4~15 min时,转化率增加缓慢,PAA产率基本稳定,并开始降低,表现出了典型的中间产物的特性。当煤的转化率超过55%时,在氢自由基的生成上,溶解氢将发挥重大作用。  相似文献   

14.
神华煤液化残渣的加氢反应动力学   总被引:3,自引:0,他引:3       下载免费PDF全文
徐蓉  王国龙  鲁锡兰  李洋洋  张德祥 《化工学报》2009,60(11):2749-2754
在微型反应管中,以神华煤液化残渣为原料,四氢萘为溶剂,在氢初压6 MPa、反应温度425~485℃、反应时间为0~30 min条件下,进行了煤液化残渣加氢实验,研究了煤液化残渣的加氢动力学特性。将氢化产物分为油气、沥青质和四氢呋喃不溶有机质,根据集总概念建立了煤液化残渣的加氢动力学模型,所建模型与实验值吻合程度高。在实验条件下,四氢呋喃不溶有机质向沥青质转化的活化能为147.41 kJ·mol-1,沥青质向油气转化的活化能为34.81 kJ·mol-1,沥青质缩合为四氢呋喃不溶有机质的活化能为173.48 kJ·mol-1。  相似文献   

15.
为考察神华上湾煤的直接液化性能及反应动力学,以加氢蒽油-洗油混合油作为溶剂、负载型FeOOH作为催化剂,在0.01 t·d-1煤直接液化连续实验装置上考察了不同反应温度(435~465℃)、不同停留时间(7~110 min)下液化产品组成的演变规律。研究发现,随着煤的裂解及加氢反应的进行,煤及沥青类物质(PAA)收率不断减小,重质液化产物逐步向轻质液化产物转化。当反应温度为455℃、停留时间为90 min时,煤转化率为90.41%(质量分数(,油收率为61.28%(质量分数(。随着反应条件进一步苛刻,油收率下降。基于上湾煤直接液化反应特性及其产物收率变化规律建立了11集总煤直接液化反应动力学候选模型,以BFGS优化算法对实验数据搜索、选优,确定了动力学模型参数。检验结果表明所建立的动力学模型可用于恒温阶段直接液化行为的模拟计算。  相似文献   

16.
为研究胜利褐煤在初始阶段的煤液化反应动力学,在可快速升降温的微型高压釜中对胜利褐煤进行了加氢液化反应,得到了反应初期煤液化参数,并对胜利褐煤加氢液化反应初期的动力学行为进行分析。结果表明,虽然反应器升温速度较快,但到达反应温度时,仍有一定量的煤发生了转化,在反应温度440℃、反应时间为0时转化率达到28.12%;在较低温度下,胜利褐煤只发生了部分热解反应,反应后期几乎不再转化,在380℃、反应10 min后转化率已达28%,后续基本不变;随着反应温度的升高,反应转化率、油水产率、气产率等指标增大,反应前10 min增速较快,10~25 min时反应速率减缓,主要是沥青烯组分作为中间产物不断向油转化,速率较低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号