首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 在有向传感器网络中,可以通过调整节点的感知方向来增强目标区域的覆盖率.提出了有向传感器网络覆盖增强问题的一种贪婪迭代算法,在每次迭代中,调整那些使得覆盖率增加最大的节点的感知方向,重复此迭代过程直至通过调整任一节点的感知方向已不能再增加覆盖率.此外,还提出了一种通过计算几何求解该算法中区域计算问题的方法,以提高计算精度和减少计算时间.大量的仿真实验结果表明,该算法的执行时间较短,收敛速度较快,能够获得比现有算法更高的目标区域覆盖率.  相似文献   

2.
在无线多媒体传感器网络(Wireless Multimedia Sensor Networks,WMSNs)中,由于节点部署的不合理,往往存在较多的监控盲区,影响了网络的服务质量。为了提高网络的覆盖率,在有向感知模型基础的基础上,提出了一种基于粒子群算法的WMSNs覆盖增强算法PSOCE。PSOCE算法以网络覆盖率为优化目标,以粒子群算法为计算工具,同时对节点的位置与主感知方向进行调整。仿真试验表明,PSOCE算法能够有效地改进WMSNs的覆盖质量,网络的覆盖率能提高6%~12%。  相似文献   

3.
The difficulty of maximizing the lifetime in directional sensor networks has gained increasing atten-tion recently. Most of the existing studies are focused on directional sensors with single or several predefined sensing ranges. In the present study, directional sensors can change sensing ranges smoothly. We address the problem of maxi-mizing the lifetime in directional sensor networks with such smoothly varying sensing ranges,and propose a hybrid ap-proach that combines a column generation method with an immune genetic algorithm. We search for attractive columns with the genetic algorithm, and optimize them by designing dynamic vaccines. Computational results demon-strate the performance of the proposed approach. Mean-while,the advantage of the mentioned sensors in terms of solution quality is also revealed.  相似文献   

4.
The channel scheduling problem is to decide how to commit channels for transmitting data between nodes in wireless networks. This problem is one of the most important problems in wireless sensor networks. In this problem, we aim to obtain a near‐optimal solution with the minimal energy consumption within a reasonable time. As the number of nodes increases in the network, however, the amount of calculation for finding the solution would be too high. It can be difficult to obtain an optimal solution in a reasonable execution time because this problem is NP‐hard. Therefore, most of the recent studies for such problems seem to focus on heuristic algorithms. In this paper, we propose efficient channel scheduling algorithms to obtain a near‐optimal solution on the basis of three meta‐heuristic algorithms; the genetic algorithm, the Tabu search, and the simulated annealing. In order to make a search more efficient, we propose some neighborhood generating methods for the proposed algorithms. We evaluate the performance of the proposed algorithms through some experiments in terms of energy consumption and algorithm execution time. The experimental results show that the proposed algorithms are efficient for solving the channel scheduling problem in wireless sensor networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
针对有向传感器网络中的时空覆盖调度问题进行研究,从有向传感器节点感知模型出发,设计了基于网格划分的网络基本区域生成方法,在此基础上提出了节点最大覆盖调度迭代选择MaxGreedy算法.通过仿真实验验证了网格划分方法的有效性,设计了一系列的时空覆盖算法对比实验,深入评估MaxGreedy算法的性能.对比试验结果表明,MaxGreedy算法可以高效地生成网络的节点调度模式,并在一定程度上提高网络的时空覆盖率.  相似文献   

6.
In common practice, sensor nodes are randomly deployed in wireless sensor network (WSN); hence, location information of sensor node is crucial in WSN applications. Localization of sensor nodes performed using a fast area exploration mechanism facilitates precise location‐based sensing and communication. In the proposed localization scheme, the mobile anchor (MA) nodes integrated with localization and directional antenna modules are employed to assist in localizing the static nodes. The use of directional antennas evades trilateration or multilateration techniques for localizing static nodes thereby resulting in lower communication and computational overhead. To facilitate faster area coverage, in this paper, we propose a hybrid of max‐gain and cost‐utility–based frontier (HMF) area exploration method for MA node's mobility. The simulations for the proposed HMF area exploration–based localization scheme are carried out in the Cooja simulator. The paper also proposes additional enhancements to the Cooja simulator to provide directional and sectored antenna support. This additional support allows the user with the flexibility to feed radiation pattern of any antenna obtained either from simulated data of the antenna design simulator, ie, high frequency structure simulator (HFSS) or measured data of the vector network analyzer (VNA). The simulation results show that the proposed localization scheme exhibits minimal delay, energy consumption, and communication overhead compared with other area exploration–based localization schemes. The proof of concept for the proposed localization scheme is implemented using Berkeley motes and customized MA nodes mounted with indigenously designed radio frequency (RF) switch feed network and sectored antenna.  相似文献   

7.
In this study, an optimal method of clustering homogeneous wireless sensor networks using a multi‐objective two‐nested genetic algorithm is presented. The top level algorithm is a multi‐objective genetic algorithm (GA) whose goal is to obtain clustering schemes in which the network lifetime is optimized for different delay values. The low level GA is used in each cluster in order to get the most efficient topology for data transmission from sensor nodes to the cluster head. The presented clustering method is not restrictive, whereas existing intelligent clustering methods impose certain conditions such as performing two‐tiered clustering. A random deployed model is used to demonstrate the efficiency of the proposed algorithm. In addition, a comparison is made between the presented algorithm other GA‐based clustering methods and the Low Energy Adaptive Clustering Hierarchy protocol. The results obtained indicate that using the proposed method, the network's lifetime would be extended much more than it would be when using the other methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
针对异构传感器节点在网络初期部署中产生大量覆盖面积冗余的问题,结合相关几何图形知识,以提高网络覆盖率、改善节点分布均匀度为优化目标,提出一种基于节点定向移动来减少节点两两之间覆盖冗余面积的网络覆盖优化算法。算法预先设立判定门限,通过判定两两节点之间覆盖冗余面积与设定门限的大小关系,对节点实施有向性偏移,逐一减少节点之间的覆盖冗余面积。理论分析与实验仿真证明,该算法能够有效提高异构传感器网络部署中的覆盖率,优化节点分布均匀度将近8.7,尤其在大型传感器网络的节点部署中具有极强实用性。  相似文献   

9.
In recent years, directional sensor networks composed of directional sensors have attracted a great deal of attention due to their extensive applications. The main difficulties associated with directional sensors are their limited battery power and restricted sensing angle. Moreover, each target may have a different coverage quality requirement that can make the problem even more complicated. Therefore, satisfying the coverage quality requirement of all the targets in a specific area and maximizing the network lifetime, known as priority-based target coverage problem, has remained a challenge. As sensors are often densely deployed, organizing the sensor directions into several cover sets and then activating these cover sets successively is a promising solution to this problem. In this paper, we propose a learning automata-based algorithm to organize the directional sensors into several cover sets in such a way that each cover set can satisfy coverage quality requirement of all the targets. In order to verify the performance of the proposed algorithm, several simulations were conducted. The obtained results showed that the proposed algorithm was successful in extending the network lifetime.  相似文献   

10.
研究了计算机局域网优化设计问题的数学模型。采用稀疏哈夫曼树来描述网络拓扑结构,并将遗传算法和模拟退火法相结合,提出了一种启发式搜索算法,实现了以最小平均时延为目标的局域网拓扑优化设计。实验结果表明启发式算法具有较好的性能。  相似文献   

11.
针对分布式贪心算法(DGreedy)以传感器节点的剩余能量为优先级,节点处理顺序没有考虑相邻节点间的关系对网络覆盖率的影响,从而影响覆盖率的不足,在此提出了一种新的有向传感器网络覆盖算法。基于全局贪心的原则,以节点一重覆盖区域面积的大小为优先级,优先确定一重覆盖区域面积最大的传感器节点方向,从而保证传感器网络的一重覆盖区域面积更大,重叠覆盖区域较少。对比实验结果表明,该算法能有效提高覆盖率。  相似文献   

12.
该文针对无线传感器网络的覆盖性和连通性问题,在假设传感器节点地理位置信息已知的条件下,设计了一种包含全连通群的建立和维护以及群内节点休眠调度的全新算法。该算法采用保证群内节点彼此一跳可达的全连通群分群方法,以及分布式节能的休眠调度策略,最大程度上减少传感器网络的能量消耗,延长了网络寿命。仿真结果表明:该算法能较好地保证无线传感器网络的覆盖性和连通性,且能耗较低。  相似文献   

13.
采用遗传模拟退火算法研究导弹预警卫星传感器调度   总被引:8,自引:0,他引:8  
从导弹预警卫星的技术特点出发,通过对传感器调度分析,建立了相应的数学模型。结合遗传算法和模拟退火算法的特点,提出了一种新的解决导弹预警卫星传感器调度问题的遗传模拟退火算(GASA)。仿真结果表明该算法有效地解决了多目标情况下的传感器实时调度问题,并优于一般的智能算法。  相似文献   

14.
针对智慧城市无线视频传感网络建设需要,提出一种基于量子遗传算法的网络优化覆盖算法。算法面向复杂的监视区场景,监视区中存在形状各异的障碍物,各区域的重要程度不同。以二维离散网格模型描述监视区场景,用编码描述矩阵表示监视区域,用七元组描述有向无线视频传感器。通过严格的数学推导得出了问题的数学规划模型。优化覆盖算法由IntialDeployment算法和OptimizedDeployment算法2部分组成,以获得最大有效覆盖率的网络部署方案为求解目标。采用量子遗传算法搜索解空间,通过合理编码染色体,优化量子旋转门参数,使算法的运算速度快,收敛性好。引入理想覆盖率和理想加权覆盖率2个极限值,采用相对比较法评判算法优劣。仿真实验和数据分析表明,算法获得的方案能很好地逼近理想极限值。在传感器节点数给定的情况下,算法能获得最大的覆盖率。  相似文献   

15.
Wireless sensor networks have emerged recently as an effective way of monitoring remote or inhospitable physical targets, which usually have different quality of service (QoS) constraints, i.e., different targets may need different sensing quality in terms of the number of transducers, sampling rate, etc. In this paper, we address the problem of optimizing network lifetime while capturing those diversified QoS coverage constraints in such surveillance sensor networks. We show that this problem belongs to NP‐complete class. We define a subset of sensors meeting QoS requirements as a coverage pattern, and if the full set of coverage patterns is given, we can mathematically formulate the problem. Directly solving this formulation however is difficult since number of coverage patterns may be exponential to number of sensors and targets. Hence, a column generation (CG)‐based approach is proposed to decompose the original formulation into two subproblems and solve them iteratively. Here a column corresponds to a feasible coverage pattern, and the idea is to find a column with steepest ascent in lifetime, based on which we iteratively search for the maximum lifetime solution. An initial feasible set of patterns is generated through a novel random selection algorithm (RSA), in order to launch our approach. Experimental data demonstrate that the proposed CG‐based approach is an efficient solution, even in a harsh environment. Simulation results also reveal the impact of different network parameters on network lifetime, giving certain guidance on designing and maintaining such surveillance sensor networks. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
张可 《光电子快报》2010,6(3):229-231
An artificial fish-swarm based coverage-enhancing algorithm(AFCEA) for visible light sensor networks is proposed.In AFCEA,the improved optimization algorithm is used into the solution for coverage-enhancing in directional visible light sensor networks with the rotational direction model.Compared with other classic directional sensor networks coverageenhancing algorithms,AFCEA can achieve a higher directional sensor networks coverage with less iterative computing times.  相似文献   

17.
In the wireless sensor networks, sensor deployment and coverage are the vital parameter that impacts the network lifetime. Network lifetime can be increased by optimal placement of sensor nodes and optimizing the coverage with the scheduling approach. For sensor deployment, heuristic algorithm is proposed which automatically adjusts the sensing range with overlapping sensing area without affecting the high degree of coverage. In order to demonstrate the network lifetime, we propose a new heuristic algorithm for scheduling which increases the network lifetime in the wireless sensor network. Further, the proposed heuristic algorithm is compared with the existing algorithms such as ant colony optimization, artificial bee colony algorithm and particle swarm optimization. The result reveals that the proposed heuristic algorithm with adjustable sensing range for sensor deployment and scheduling algorithm significantly increases the network lifetime.  相似文献   

18.
Wireless passive sensor networks play an important role in solving the energy limitation of nodes in the Internet of Things, and node scheduling is a significant method used to improve the energy utilization of nodes. In this work, an unused energy model based on analyzing the energy consumption characteristics of passive nodes is proposed because no unified model of passive sensor nodes is reported in previous studies. A rapid square partition clustering method is proposed according to the analysis of the relation between the sensing and communication radii of nodes, and the secondary grouping and node scheduling in each cluster are implemented to ensure the coverage rate of networks. Experimental results show that the state distribution of nodes in the proposed algorithm is favorable. The performance of the proposed algorithm is significantly affected by the P ratio between the working and charging powers of nodes. When the value of P is less than 100, the network coverage and connectivity rate are maintained at more than 95% and 90%, respectively, and are both higher than the existing algorithm.  相似文献   

19.
Careful deployment of nodes in underwater acoustic sensor networks in a distributed manner with the goal of maximized coverage and guaranteed connectivity is a challenging problem because it is very difficult and costly to access the 3D underwater environment. This paper presents a novel algorithm for self‐deployment of nodes in underwater acoustic sensor networks assuming that the nodes are randomly dropped to the water surface and form a densely populated connected network at the water surface. The idea of the algorithm is based on calculating an optimized depth for each node in the network in such a way that the possible sensing coverage overlaps are minimized and the connectivity of final topology is guaranteed. The algorithm has three main phases. In the first phase, nodes are organized in a tree structure that is rooted at the surface station. In the second phase, the depths for all nodes are computed iteratively at surface station. In the final phase, the calculated depths are distributed to nodes so that the nodes start sinking. The performance of the proposed approach is validated through simulation. We observed that the proposed approach performs at least 10% better in terms of network coverage than contemporary schemes in the literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
为提高无线多媒体传感器网络区域覆盖率,提出了人工鱼群优化的覆盖增强算法,算法基于三维方向传感器感知模型,优化网络传感器方向角度值,减少重叠覆盖以提升网络覆盖率。仿真实验表明该方法能有效增强网络覆盖率,并就传感器参数对覆盖率影响进行分析,分析结果表明优化后的网络覆盖率更加接近理想覆盖率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号