首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the publication of Alamouti's famous space‐time block code, various quasi‐orthogonal space‐time block codes (QSTBC) for multi‐input multi‐output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2n (n = 3, 4,…) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum‐likelihood receiver or low‐complexity zero‐forcing receiver.  相似文献   

2.
A multistage recursive block interleaver (MIL) is proposed for the turbo code internal interleaver. Unlike conventional block interleavers, the MIL repeats permutations of rows and columns in a recursive manner until reaching the final interleaving length. The bit error rate (BER) and frame error rate (FER) performance with turbo coding and MIL under frequency-selective Rayleigh fading are evaluated by computer simulation for direct-sequence code-division multiple-access mobile radio. The performance of rate-1/3 turbo codes with MIL is compared with pseudorandom and S-random interleavers assuming a spreading chip rate of 4.096 Mcps and an information bit rate of 32 kbps. When the interleaving length is 3068 bits, turbo coding with MIL outperforms the pseudorandom interleaver by 0.4 dB at an average BER of 10-6 on a fading channel using the ITU-R defined Vehicular-B power-delay profile with the maximum Doppler frequency of fD = 80 Hz. The results also show that turbo coding with MIL provides superior performance to convolutional and Reed-Solomon concatenated coding; the gain over concatenated coding is as much as 0.6 dB  相似文献   

3.
研究了一种联合低密度校验(LDPC,Low-Density Parity-Check)码和酉空时调制(USTM,Unitary Space-Time Modulation)技术在不相关瑞利平坦衰落(Rayleigh flat fading)下的多输入多输出信道(MIMO,Multiple-Input Multiple-Output)系统的性能.在无信道状态信息下,采用可并行操作的和积译码算法(SPA,Sum-Product Algorithm)的LDPCC-USTM级联系统具有优异的性能,并分析了不同LDPC码集下对系统性能的影响.仿真结果表明LDPCC-USTM级联系统比与未级联的相比有近23dB的编码增益,与基于Turbo码的USTM[6]系统相比有5dB多的编码增益,且基于非规则的LDPC码的级联系统比基于规则码有近1dB的编码增益.  相似文献   

4.
本文基于Turbo码和协同通信的相关理论,提出一种新的基于Turbo协同分集的协同通信方案。在加性高斯白噪声和瑞利快衰落的两种信道条件下的仿真结果表明,基于Turbo协同分集的协同通信方案比现有的基于Turbo编码的协同通信方案具有更优的误比特率性能。  相似文献   

5.
衰落信道中结合短帧交织的Turbo码的研究   总被引:1,自引:0,他引:1  
Turbo码作为信道编码方案,可以获得较高的误比特性能,而交织器的设计是影响Turbo码性能的关键环节。在码的重量分析的基础上,借用稀疏矩阵概念,对S型随机交织器进行改进,提出了一种短帧交织器的设计原则,它可以减少低重量码的数量,从而提高Turbo码的性能。  相似文献   

6.
We consider bit-interleaved coded modulation with iterative decoding (BICM-ID) for bandwidth-efficient transmission over Rayleigh fading channels. We propose the design criteria that utilize a large Hamming distance inherited in a low-rate code and a new labeling technique designed specifically for fading channels. This results in a large coding gain over noniterative coded modulation and performance close to that of “turbo” coded modulation with less complexity. We also show that BICM-ID designed for fading channels usually has a very good performance over the additive white Gaussian noise (AWGN) channel while the converse is difficult to achieve. When combined with signal space diversity, diversity order can be improved to twice the diversity order of conventional BICM-ID; therefore, the code complexity can further be reduced while maintaining the same level of performance. Specifically, with the bandwidth efficiency of 2 bits/s/Hz over Rayleigh fading channels, a bit error rate (BER) of 10-6 can be achieved with 16-QAM, a four-state rate 1/2 code at Eb/N0 of about seven dB. We also derive performance bounds for BICM-ID with and without signal space diversity over Rayleigh fading channels, which can be easily extended for other types of fading channels  相似文献   

7.
For pt. I see ibid., vol.45, no.6, p.563-572, 1997. We study coded modulation with block differential detection in an arbitrarily correlated Rician fading channel with space diversity. Coded differential q-PSK is included in our analysis as a special case. A metric is chosen that is optimum for perfect interleaving, slow fading, and independent diversity branches. For slow fading, we compare the the cutoff rates of the channels resulting from different choices of block length N and diversity index M. Specifically, we show that block detection with diversity may or may not generate a better coding channel than usual differential detection, according to the code selected and the combination of values of M and N. In particular, for low-diversity orders (M=1,2) and for low-to-medium code rates, differential detection is still an optimal or near-optimal solution, while for high-diversity orders (M⩾2) and medium-to-high code rates (up to uncoded modulation) block detection with N>2 can provide a significant gain. An error floor always exists when fading is fast. It decreases exponentially with the product of code diversity and space diversity, so that the latter emerges as a very effective technique for lowering the error floor of a system affected by fast fading. Performance examples based on actual coding schemes are also shown  相似文献   

8.
李浩  彭华  丁金忠 《信号处理》2012,28(9):1284-1289
粒子滤波是一种基于贝叶斯估计的算法,在信道盲辨识和盲均衡问题上具有快收敛、抗深衰信道等优势。Turbo盲均衡在低信噪比条件下有较好的误码性能。为了在深衰信道下使通信具有良好的误码性能,对粒子滤波盲均衡算法进行改进,改进算法的重要性采样函数利用了粒子的先验信息,得到一种软输入软输出的粒子滤波盲均衡算法。依据Turbo盲均衡的框架结构实现了一种基于粒子滤波的Turbo盲均衡算法,该算法利用信道编码带来的编码增益,提高了均衡和信道辨识的性能。仿真结果表明相比粒子滤波盲均衡算法本文提出算法的误码率性能提高1dB左右,误帧率性能则提高了3dB以上,经分析可知在信道系数估计较为准确的条件下,系统数据帧几乎没有误码。   相似文献   

9.
A two-symbols/branch scheme of multiple block coded modulation (MBCM) is investigated under fading channels. Compared with a conventional scheme of block coded modulation (BCM), this two-symbols/branch MBCM scheme greatly increases the minimum squared Euclidean distance (MSED), minimum symbol distance (MSD), and minimum product distance (MPD). These three distances determine the bit-error-rate (BER) performance under either Gaussian or fading channels. A pilot symbol assisted fading compensation, as well as the techniques of symbol interleaving and branch weighting, are employed to combat the effect of channel fading. Through computer simulations, it is shown that large coding gains are obtained under both Rayleigh and Rician fading channels.  相似文献   

10.
黄英  雷菁 《信号处理》2010,26(2):170-174
多维乘积码是一种成熟的编码技术,其性能较好,且具有灵活的多维结构。本文提出一种基于多维乘积码的协作方案,利用不同维数的校验位进行协作,达到获取分集增益的目的。文中以分量码为扩展汉明码的多维乘积码为例,在慢衰落、快衰落瑞利信道下进行了理论性能分析和计算机仿真,仿真结果显示:慢衰落信道下,BER为10-3时,协作程度为50%,用户间信道SNR大于10dB时,增益大于8dB;在快衰落信道下,可以通过该协作方案可达到帮助上行信道较差的用户的目的。从实用性和良好性能的角度来看,该编码协作将具有较好的应用前景。   相似文献   

11.
The performance of trellis-coded differential octal phase-shift keying (coded 8-DPSK) with differentially coherent detection and soft-decision Viterbi decoding is investigated. A suitable receiver is presented whose signal processing is based on Nyquist signaling, requiring only one complex sample per modulation interval. Symbol synchronization and automatic frequency control are performed in a decision-directed way. Bit-error-rate (BER) performance over Gaussian, Rayleigh, and Rician channels is determined by means of computer simulations. The performance of coded 8-DPSK on the Gaussian channel is shown for a four-state convolutional trellis code. The unquantized outputs of up to three symbol detectors with delays of 1, 2, and 3 symbol periods are used for metric computation. The coding gain which includes losses due to timing and frequency synchronization errors is found to be 2.5 dB at BER=10-5 with respect to uncoded 4-DPSK. Much larger gains are achieved for fading channels if interleaving is applied. Using an eight-state trellis code the performance is determined on Rayleigh and Rician channels for various Doppler spreads and interleaver sizes  相似文献   

12.
Performance and design of space-time coding in fading channels   总被引:1,自引:0,他引:1  
The pairwise-error probability upper bounds of space-time codes (STCs) in independent Rician fading channels are derived. Based on the performance analysis, novel code design criteria for slow and fast Rayleigh fading channels are developed. It is found that, in fading channels, the STC design criteria depend on the value of the possible diversity gain of the system. In slow fading channels, when the diversity gain is smaller than four, the code error performance is dominated by the minimum rank and the minimum determinant of the codeword distance matrix. However, when the diversity gain is larger than, or equal to, four, the performance is dominated by the minimum squared Euclidean distance. Based on the proposed design criteria, new codes are designed and evaluated by simulation.  相似文献   

13.
It is known that concatenated coding can significantly enhance the performance of digital communication systems operating over fading channels when compared to uncoded or single-coded systems. The price to be paid for such an improvement, however, is a substantial increase in the required bandwidth. In this paper, we consider the use of a concatenation scheme in which the inner code is a trellis-coded modulation (TCM) system. The analysis is carried out for two different outer codes: a binary Golay code and a non-binary Reed-Solomon code. Results obtained for the Rayleigh and Rician fading channels through analytical bounds indicate that the use of this system does provide a significant reduction in the bit error probability, a fact that is also verified through computer simulation. Unlike a traditional concatenated system, the proposed method achieves the coding gain while maintaining acceptable bandwidth efficiency.  相似文献   

14.
In this paper, the performance of space time‐turbo trellis coded modulation (ST‐TTCM) is evaluated over Rician and Rayleigh fading channels with imperfect phase. We modify Baum–Welch (BW) algorithm to estimate the fading and phase jitter parameters for multi‐antenna configurations. Thus, we assume that the channel parameters change slower than carrier frequency. We know that, at high data rate transmissions over wireless fading channels, space–time block codes (STBC) provide the maximal possible diversity advantage. Here, the combined effects of the amplitude and the phase of the received signal are considered, each one modelled by Rician and Tikhonov distributions, respectively. We investigate space time‐turbo trellis coded modulation (ST‐TTCM) for 8‐PSK for several Rician factor K and phase distortion factor η. Thus, our results reflect the degradations both due to the effects of the fading on the amplitude and phase noise of the received signal while the channel parameters are estimated by BW algorithm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
该文研究了级联空时编码系统在编码增益,分集增益和传输能量效率的限定下最大化传输速率的问题,提出了一种在保留TCM编码方法校验位冗余的同时,还可获得满速率串行级联空时分组TCM编码方法。新方法通过引入具有不同功率分集因子的正交发射码字矩阵,并给出新的译码算法,从而使得新的编码方法在获得满速率的同时还可以获得满分集增益。分析和MATLAB仿真结果表明,在相同的编码状态数下,新方法在编码增益上比现有的满速率超正交空时分组编码方法提高1dB左右。  相似文献   

16.
Orthogonal space–time block codes provide full diversity with a very simple decoding scheme. However, they do not provide much coding gain. For a given space–time block code, we combine several component codes in conjunction with set partitioning of the expanded signal constellation according to the coding gain distance (CGD) criterion. By providing proper interlevel coding between adjacent blocks, we can design an orthogonal space–time block code with high rate, large coding gain, and low decoding complexity. The error performance of an example code is compared with some codes in computer simulation. These codes are compared based on the situation of the same transmission rate, space diversity order, and state complexity of decoding trellis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Robust space-time codes for correlated Rayleigh fading channels   总被引:4,自引:0,他引:4  
Space-time (ST) coding has emerged as an effective strategy to enhance performance of wireless communications in fading environments. Many different ST coding schemes have been proposed to achieve reliable communications in independent fading channels. However, a design of robust ST codes for correlated fading channels has not been addressed. We propose a simple robust ST coding scheme that achieves robust performance over a wide range of fading conditions. The key to achieve robust performance is to formulate code design criteria that are not dependent on the channel correlation statistics. A provably robust scheme can be formulated by concatenating a full-rank ST block code with an outer encoder. We derive several robust code examples via the concatenated orthogonal ST block code and TCM construction. The simulation results show that some traditional ST codes perform poorly, whereas the proposed codes achieve robust performance over a broad range of fading conditions.  相似文献   

18.
Fading in mobile satellite communications severely degrades the performance of data transmission. The channel is modeled with nonfrequency selective Rice and Rayleigh fading. Also, stored channel simulation is used for hardware data transmission. FEC coding with Viterbi decoding of convolutional codes, and Berlekamp-Massey decoding of Reed-Solomon codes, are used to compensate for the fading. In addition to interleaving, channel state and erasure information improve the performance of the decoder. The BER after decoding is calculated for specific codes on several channels and for different transmission schemes. Using very simple channel state and erasure information gives 2-7 dB additional coding gain. These gains have been verified by hardware data transmission on synthetic fading channels and stored mobile satellite channels.  相似文献   

19.
将差分编码方案引入到跳相发射分集系统中,提出了跳相差分空时编码(PHDSTBC)方案,该方案有效地改善了整个系统中的差错性能和时延。同时,伪随机的相位跳变大大增强了系统的保密性及干扰对抗性,提高了系统抗突发错误和深度衰落的能力。仿真结果表明,在准静态Rayleigh信道下,误码率为10-3时,新方案相比TarokhJafarkhani差分空时方案(TJDSTBC)性能有1.5dB的信噪比增益。  相似文献   

20.
In this paper, we consider the optimization of the performance of QPSK and 16‐QAM coded orthogonal frequency division multiplexing (COFDM) signals over the non‐linear and mobile satellite channel. A high power amplifier and Rician flat fading channel produces non‐linear and linear distortions; an adaptive predistortion technique combined with turbo codes will reduce both types of distortion. The predistorter is based on a feedforward neural network, with the coefficients being derived using an extended Kalman filter (EKF). The conventional turbo code is used to mitigate Rician flat fading distortion and Gaussian noise. The performance over a non‐linear satellite channel indicates that QPSK COFDM followed by a predistorter provides a gain of about 1.7 dB at a BER of 3×10?3 when compared to QPSK COFDM without the predistortion scheme and 16‐QAM COFDM provides a gain of 0.5 dB output back‐off and 1.2 dB signal to noise ratio at a BER of 3×10?5 when compared with an adaptive predistorter based on the Harmmerstein model. We also investigate the influence of the guard time interval and Doppler frequency effect on the BER performance. When the guard interval increases from 0 to 0.125T samples and the normalized Doppler frequency is 0.001, there is a gain of 0.7 and 1 dB signal to noise ratio at a BER of 6×10?4 for QPSK and 16‐QAM COFDM, respectively. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号