首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于ANSYS数值模拟平台,建立了三维瞬态激光堆焊40Cr钢温度场有限元模型,利用APDL参数设计语言实现热源的移动,对40Cr钢表面激光相变硬化处理过程的温度场进行模拟,得出熔池温度随时间的变化规律,并对比了不同功率和不同扫描速度对温度场的影响。结果表明:随热源的移动,温度场呈现彗星状云图,且激光光斑前缘温度梯度大,后部温度梯度小;不同功率对比结果表明,在相同的激光扫描速度6 mm/s时,表面温度最大值随激光功率增大而升高,在900 W时达到4238℃;不同速度对比结果表明,在相同功率800 W时,表面温度最大值随激光速度增大而减小,在6 mm/s时达到3738℃。  相似文献   

2.
使用有限元计算方法对06Cr19Ni10奥氏体不锈钢钨极氩弧焊焊接接头进行温度场和残余应力场分析。建立焊接移动热源模型,基于FORTRAN语言使用ABAQUS有限元子程序DFLUX进行编译加载,在焊接线能量400J/mm下获得了最佳接头尺寸。通过等比例改变焊接热源功率和焊接速度研究了温度场和残余应力场变化规律。结果表明:随着焊接热源功率和焊接速度的增加,焊缝中心峰值温度上升,随横向距离的增大,峰值温度差异性减小;而纵缝上残余应力分布变化较小,横缝上残余拉压应力增大。  相似文献   

3.
许伟伟  史耀武  陈俐  杨璟  许飞 《焊接》2011,(12):46-48
通过3 mm厚5A90铝锂合金激光焊工艺试验,采用无量纲背宽比R表征焊缝截面,较系统地研究了激光功率、焊接速度和离焦量对焊缝成形的影响规律.结果表明,焊缝背宽比随激光功率的增大而增大,随焊接速度的增大而减小,且在离焦量为0~+1 mm范围内达到最大.激光功率和焊接速度的合理匹配,可以获得较好的焊缝成形.  相似文献   

4.
以1.6 mm厚的DP980薄板为研究对象,基于有限元分析软件,通过调节焊接面热源和柱体热源的分配比例,建立激光焊热源模型。采用自适应网格技术对不同焊接工艺参数下DP980薄板对接焊进行温度场、应力场模拟,并通过比较正交模拟试验结果,得到了较优焊接工艺,为实际焊接生产提供理论依据。结果表明,模拟所得的焊缝熔池与实际焊接结果相符,即该热源模型具有一定适用性;相比激光功率,焊缝形貌随焊接速度的变化更为明显;焊接最高温度与激光功率呈正相关,与焊接速度呈负相关;同一焊接速度,焊接残余应力及变形都随激光功率的增大而增大;同一激光功率,焊接速度合适时,焊接残余应力及变形都随焊接速度的增大而减小;相比于激光功率,焊接速度对焊接残余应力及变形的影响较大。  相似文献   

5.
为提高激光选区熔化WC 12Co硬质复合材料的成形质量,采用有限元仿真软件Ansys 2021R1对SLM成形WC 12Co硬质复合材料过程的温度场进行数值模拟仿真研究,研究成形温度场的温度分布和成形工艺参数(激光功率、扫描速度、扫描间距和基板预热温度)对温度场的影响,为优化WC 12Co硬质复合材料成形提供试验依据。结果表明:激光功率增大,成形区域温度增大,位置点3的峰值温度从3507.47℃增大至3837.52℃;激光扫描速度增大,成形区域温度降低,位置点5的峰值温度从3592℃下降至2897℃,峰值温度下降695℃;扫描间距的增加使各扫描区域的温度有所降低,位置点3的峰值温度从3330℃逐渐降低至3123℃。在同一成形工艺参数下,激光扫描前一路径对后一路径有预热作用,随着扫描路径的增加,成形区域的温度呈现逐渐上升趋势。基板预热至120℃能够提高熔池的内部温度,减小成形件之间的温度差异,缩小温度梯度差。当激光功率增大时,熔池的宽度和深度随之增大;当激光扫描速度增大时,熔池的宽度先增大后减小,熔池的深度线性反向减小;当扫描间距增大时,熔池的宽度和深度均减小。模拟获得的温度场仿真结论能够大致反映成形试样的表面质量和合金粉末的熔化状态随成形工艺参数变化的趋势。  相似文献   

6.
Nd:YAG激光深熔焊接过程中小孔的形态特征   总被引:4,自引:0,他引:4       下载免费PDF全文
通过图像处理得到了Nd:YAG激光深熔焊接过程中小孔内外边缘宽长比、内外边缘中心到激光光斑中心以及内外边缘中心之间的距离,并将其作为小孔的形态特征参数,研究了小孔形态随焊接工艺参数变化的规律.研究结果表明,激光功率的增大使小孔径向形状趋向圆形并使其在深度方向上的倾斜程度减小;在低速焊时,小孔形态基本不变,而在中高速焊接时,随着焊接速度的增大,小孔径向形状沿焊接方向拉长,小孔的倾斜程度也不断增大;在一定离焦量范围内,离焦量的变化对小孔在径向和深度方向上的形态影响较小.  相似文献   

7.
随着激光焊接在电子元器件的局部焊接中应用越来越广泛,有必要开展焊接引起的产品可靠性问题的研究,而焊接温度场分析是进一步分析焊接缺陷以及焊接残余应力对产品可靠性影响的前提条件,因此,本文采用有限元方法计算了激光功率400 W,光斑直径0.3 mm,焊接时间1 min等参数下难熔异种金属钽和钼(Ta/Mo)的三维激光焊接模型的温度场。文章介绍了建模、网格划分、边界条件设置、材料性能参数随温度变化和相变潜热的处理方法,并计算了高斯和平均分布2种不同热源模型的加载方式的焊接温度场模拟结果。结果表明,对于激光热导焊采用高斯热源加载方式会更准确,焊接中间层金属Pt的最高温度有1 900.1℃,超过其熔点,焊接效果较好;同时呈现激光热导焊典型的熔池形貌—碗状,并用确定的仿真模型讨论了不同焊接速度、不同焊接功率对焊接温度场分布的影响,分析结果可为激光焊接异种金属材料的工艺参数的选择提供理论依据。  相似文献   

8.
为研究碳纤维增强复合材料和铝合金搭接激光焊接过程的温度变化规律,文中以6061铝合金和碳纤维增强尼龙66复合材料(CF/PA66)为研究对象,建立了基于热传导的有限元模型,使用SYSWELD软件对两种材料搭接激光焊接过程进行数值模拟,并通过试验验证了模型的准确性;在此基础上研究了激光功率、焊接速度、搭接宽度、冷却条件、工装导热条件对接头温度场的影响规律;研究发现,CF/PA66树脂熔化区域随着激光功率的增大而增加,随冷却速度的增大而减小,同种工艺参数下材料搭接尺寸对界面树脂最大熔化宽度无影响,水冷条件能够显著降低CF/PA66树脂熔化量,导热材料热导率越大,对PA66树脂熔化量的降低作用越显著.  相似文献   

9.
余淑荣  熊进辉  樊丁  陈剑虹 《电焊机》2007,37(3):28-30,40
利用高温热电偶检测异厚度铝合金激光拼焊时的温度场,分析不同检测位置、激光功率、焊接速度、添加粉末、板材厚度对温度场的影响.测量结果表明,焊缝附近温度梯度非常大.激光功率越高、焊接速度越慢,同一测量点峰值温度越高.添加金属粉末时,材料表面对激光的吸收率增强,同一测量点的峰值温度升高.同一测量点薄板的峰值温度比厚板高,达到峰值温度的时间比厚板短.  相似文献   

10.
为减少激光深熔焊接铝合金过程中产生的冶金型气孔和小孔型气孔,达到提高工件力学性能的目的,系统分析激光功率、焊接速度以及离焦量等工艺参数分别对两种气孔造成的影响,同时观察不同焊接参数下小孔上方的金属蒸汽羽烟形状与波动情况,以反映焊接过程中小孔的稳定性。结果显示,增加激光功率或减小激光光斑半径时,小孔上方金属蒸汽羽烟波动剧烈,形状和大小都极不稳定,间接反映小孔的稳定性更差,因此在焊缝根部产生更多小孔型气孔。当由激光能量密度变化引起的小孔深宽比增高时,小孔内部坍塌的可能性升高,并在焊缝中留下更多的气孔。当激光功率为5 kW、离焦量为0、焊接速度为2.0 m/min时,气孔率达到最小值。  相似文献   

11.
为了确定不同功率对激光重熔金属陶瓷涂层温度场的影响,针对超音速等离子喷涂工艺制备的Fe40+Ni60+35WC金属陶瓷涂层,建立了三维瞬态温度场模型,分析激光重熔过程温度场加热冷却的规律,然后通过实验确定了激光重熔金属陶瓷涂层的温度场。结果表明:光斑中心的温度最高。在同一时刻,随着激光功率的增加,光斑中心的最高温度也线性增加;在同一节点,激光功率与峰值温度成正比;不同时刻下的温度场,光斑中心前侧温度梯度大于后侧温度梯度。在此重熔涂层工艺系统中,当激光功率为2.5 kW,扫描速度为800 mm/min,光斑直径为6 mm时,可得到与基体冶金结合较好的高质量涂层。  相似文献   

12.
为减少激光深熔焊接铝合金过程中产生的冶金型气孔和小孔型气孔,达到提高工件力学性能的目的,系统分析激光功率、焊接速度以及离焦量等工艺参数分别对两种气孔造成的影响,同时观察不同焊接参数下小孔上方的金属蒸汽羽烟形状与波动情况,以反映焊接过程中小孔的稳定性。结果显示,增加激光功率或减小激光光斑半径时,小孔上方金属蒸汽羽烟波动剧烈,形状和大小都极不稳定,间接反映小孔的稳定性更差,因此在焊缝根部产生更多小孔型气孔。当由激光能量密度变化引起的小孔深宽比增高时,小孔内部坍塌的可能性升高,并在焊缝中留下更多的气孔。当激光功率为5 k W、离焦量为0、焊接速度为2.0 m/min时,气孔率达到最小值。  相似文献   

13.
薄板激光焊接热变形的检测   总被引:1,自引:1,他引:0       下载免费PDF全文
主要对5052铝合金薄板在激光焊接中的变形过程进行了全程监控,对焊接变形量进行了精确测量并得到焊接过程中待测点的变形量随时间变化的曲线.相对于传统的变形测量而言,采用独特的非接触数字图像相关技术全场测量法对激光焊接变形进行精确的测量,使用三维云图再现了变形量,并在不同焊接参数下对焊接变形量进行研究,得到焊接变形量随激光功率的增加而增加,随焊接速度的增加而减小,随着离焦量负值变为正值而减小.待测点的变形量在焊接过程中呈现持续增长的趋势,但是在不同的时间增长的速度不同.  相似文献   

14.
通过图像处理得到了Nd∶YAG激光深熔焊接过程中小孔内外边缘宽长比、内外边缘中心到激光光斑中心以及内外边缘中心之间的距离,并将其作为小孔的形态特征参数,研究了小孔形态随焊接工艺参数变化的规律。研究结果表明,激光功率的增大使小孔径向形状趋向圆形并使其在深度方向上的倾斜程度减小;在低速焊时,小孔形态基本不变,而在中高速焊接时,随着焊接速度的增大,小孔径向形状沿焊接方向拉长,小孔的倾斜程度也不断增大;在一定离焦量范围内,离焦量的变化对小孔在径向和深度方向上的形态影响较小。  相似文献   

15.
为了准确地模拟出激光深熔焊接中小孔的动态变化过程,根据小孔内激光能量的传输过程和吸收机制,采用光线追踪法来描述小孔对激光能量的多重反射吸收作用,建立了基于光线追踪的热源模型,分析了工艺因素对30Cr Mn Si A钢激光深熔焊接过程中瞬态小孔的深度振荡和熔池流动行为的影响。结果表明,激光焊接过程中熔池的小孔深度呈周期性变化并伴有高频振荡特征,而小孔的振荡是焊接不稳定性和缺陷形成的重要原因。而随着激光功率的增大,小孔深度增大,小孔深度达到相对稳定状态的时间缩短。小孔深度达到相对稳定状态时,小孔振荡的幅度随激光功率的增加而增大。在对不同工艺条件下熔池的温度场、流场和小孔的动态演化过程对比的基础上,进一步探索了焊缝气孔的形成机理,并提出了减少焊缝气孔和增强小孔稳定性的新思路。  相似文献   

16.
熔池作为所有熔焊工艺的最主要研究对象,其特征决定了最终焊缝成形质量.利用高速摄像系统对焊接过程中的熔池进行实时监测,可获得熔池在任意时刻的热图像.通过对TA15钛合金激光焊接熔池热图像进行分析计算,得到熔池的一系列特征量(主要有熔池宽度和熔池长度),重点分析了激光焊接热输入(单位厚度焊接线能量)与熔池特征量间的关系以及温度场的特点.结果表明,熔池长度和熔池宽度都随焊接热输入的增加而增加,并基本呈线性增长;焊接速度减小时,熔池宽度和熔池长度都随之增大,并且熔池长度增大得更快;激光功率减小时,熔池宽度和熔池长度随之减小.熔池内部温度分布较不均匀,尤其是过热液态区域.  相似文献   

17.
将结晶器移出感应加热器,使连续定向凝固时固液界面控制在结晶器出口;结合传热边界条件,求解连续定向凝固熔体区、液/固界面、空冷区和水冷区的一维稳态温度场方程,得出线坯最大稳态拉坯速度随熔体温度、结晶器长度、冷却距离和冷却水流量的变化规律;并基于直径为6 mm的Cu-12%Al(质量分数)线材制备的工艺条件,对理论解进行实验验证和讨论.结果表明:Cu-12%Al线材的最大稳态拉坯速度随熔体温度升高而降低,且降低速率逐渐减小,其中在1 150~1 300 ℃范围内降低37.3%;最大稳态拉坯速度随结晶器长度增加而增加,且增加速率逐渐减小,其中在20~40 mm范围内增加28.5%;最大稳态拉坯速度随冷却距离增加而降低,且降低速率逐渐减小,其中在4~12 mm范围内降低68.8%;冷却水流量在100~400 L/h范围内最大稳态拉坯速度变化不明显.当固液界面前沿温度梯度小于2.02 ℃/mm时,实际拉坯速度无法达到理论最大稳态拉坯速度;当固液界面前沿温度梯度大于4.17 ℃/mm时,最大稳态拉坯速度实验值和理论值吻合较好.  相似文献   

18.
利用有限元软件ANSYS对激光束扫描试样的温度场进行数值模拟,研究其温度分布规律。研究激光束扫描对试样显微组织和性能的影响,探讨激光功率和扫描速度等工艺参数对相变硬化层组织性能的影响。采用光学显微镜分析45钢激光相变硬化区的显微组织,用显微硬度计进行硬度测量。结果表明:45钢经激光束扫描后,硬化层的显微组织为针状或板条状的马氏体,组织更加均匀、细小,试样表面硬度最高可达57.5 HRC,相比调质处理提高约1倍,激光扫描区域组织沿深度方向上成梯度分布规律,从表层往深度方向依次为相变硬化区、过渡区和基体。激光工艺参数对硬化层显微组织和性能有较大的影响,相变硬化层的深度和宽度随着激光功率的增加而增加,随着扫描速度的增加而减小;硬化层的截面硬度随着激光功率和扫描速度的增加呈现先增加后减小的变化规律。  相似文献   

19.
利用ANSYS软件生死单元法,建立了激光增材制造钛合金温度场数值模型,模型中考虑了材料的相变潜热、材料的热物性参数随温度的变化以及激光增材过程中的热传导及与外界的换热;分析了激光扫描速度、激光功率对激光增材制造钛合金温度场的影响。结果表明:随激光功率的提高,激光扫描到相同位置的最大温度增加;随激光扫描速度的增加,激光扫描到相同位置的最大温度降低;在激光增材制造过程,由于激光束在空间的位置随时间的变化而改变,在激光扫描到增材区域,该区域温度快速增加;在激光离开增材区域时,由于热传导、与外界换热等综合作用,该区域的温度快速降低。  相似文献   

20.
在活性焊接法研究的基础上提出了激光辅助TIG焊方法.焊前在氧气保护下采用小功率激光器熔化焊道表面,然后用常规TIG焊覆盖激光预熔焊道,从而可使熔深增加,熔宽减小.结果表明,激光预熔和未预熔焊道熔深、熔宽均随焊接电流的增加而增加,但激光预熔焊道熔深增加的更快;焊接速度的增加使激光预熔和未预熔焊道熔深、熔宽均减小;随激光功率增加,焊道熔深增加,熔宽减小;随预熔速度的增加,熔深先增大后减小,熔宽先减小后增大.综合最佳参数后可以得到焊缝熔深增加明显、焊缝表面成形良好的焊道,从而可以发展为一种新的活性焊接法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号