共查询到20条相似文献,搜索用时 15 毫秒
1.
S.H. Fistedis 《Nuclear Engineering and Design》1976,38(1):43-54
Liquid metal-cooled fast breeder reactors (LMFBRs) so far have been analyzed for the consequences on the plant and the environment for hypothetical core disruptive accidents (HCDAs). To provide the appropriate analytical tools for this effort, analysis and codes are currently under development in several countries. They combine the hydrodynamics and solid mechanics (and more recently the bubble dynamics) phenomena to gage stresses, strains, and deformations of the important components of the system, and the overall adequacy of the primary and secondary containments. The effort is partitioned into the structural analysis of (a) the core components, and (b) the primary system components beyond the core.The core mechanics effort covers the structural response of fuel pins, hexcans, fuel elements, and fuel element clusters to transient pressures and thermal loads. Two- and three-dimensional finite element codes are under development for these core components. The results of these analyses would permit evaluation of the adequacy of the heat removal process to continue following severe core component deformations. Also, these analyses are currently being combined with neutronics, for the core transition phase, to allow for the mass movements for realistic neutronic calculations.The primary system and containment program treats the structural response of the components beyond the core, starting with the core barrel. Combined hydrodynamics-solid mechanics codes provide transient stresses and strains and final deformations for components such as the reactor vessel, reactor cover, cover holddown bolts, as well as the pulses for which the primary piping system is to be analyzed. Both, Lagrangian and Eulerian two-dimensional codes are under development, which in their combined form provide greater accuracy and longer durations for the treatment of HCDAs. More recently the codes are being augmented with bubble migration capability pertaining to the latter stages of the HCDA, after slug impact. This step will permit treatment of the instabilities following slug impact, the ultimate reversal of the sodium slug with the rising bubble, the bubble break-up, and the calculations of sodium splillage and radioactive gases, if any, in the secondary containment. The extent of sodium spillage and sodium fires should be known for evaluation of the secondary containment. The mechanics of bubble migration are needed for radiological study of post-accident phenomena. More recently dynamic fracture mechanics considerations are being incorporated to remove arbitrary failure criteria imposed on components such as the core barrel and vessel.Most recent developments involve the adaptation of the 2-D Eulerian primary system code to the 2-D elastic-plastic treatment of the primary piping. The pulses are provided at the vessel primary piping interfaces of the inlet and outlet nozzles. The calculation includes the elbows and pressure drops along the components of the primary piping system. Pressures larger than the ones used as input at the inlet and outlet nozzles were observed. As expected, they occur far from the nozzles, in the pipe, where the pulses meet.Recent improvements to the primary containment codes include introduction of bending strength in materials, Lagrangian mesh regularization techniques, and treatment of energy absorbing materials for the slug impact. A further development involves the combination of a 2-D finite element code for the reactor cover with the 2-D finite-difference hydrodynamic code for continuous monitoring of stresses, strains, and deformations in the cover, as well as pressure changes in the hydrodynamic code. Substantial experimental effort is in progress in various countries on the response to energy releases of vessels and internals, piping systems, subassemblies, and subassembly clusters. These experimental results are being utilized for the verification or modification of the analyses and codes under development. 相似文献
2.
Most gas-cooled fast breeder reactor (GCFR) programs in Europe and the US are now coordinated and focused on a 300 MW(e) GCFR demonstration plant program. Except for venting and artificial surface roughening, GCFR fuel is similar to liquid metal fast breeder reactor (LMFBR) fuel and operates under nearly identical conditions. The primary helium system is integrated within a PCRV like all large gas-cooled thermal reactors, with three main loops and three auxiliary loops. Design and safety studies and various experiments, including heat transfer, irradiation, and critical experiments, indicate that most feasibility questions have been answered and a demonstration plant could be in operation within 12 years. This could be followed in the mid-1990s by a large-size GCFR with a doubling time of about 10 years fueled by (UO2---PuO2) and producing either 233U in thorium blankets as fuel for advanced converters or plutonium in depleted uranium blankets. 相似文献
3.
T.P Speis C.L Allen R.E Alcouffe R.P Denise J.F Meyer W.E Kastenberg T.G Theofanous 《Annals of Nuclear Energy》1976,3(4):175-189
This paper discusses the role of the core disruptive accident (CDA) in the safety evaluations and licensing of Liquid Metal Fast Breeder Reactors (LMFBR). Parametric studies of transient overpower (TOP) accidents based on calculations for SNR-300 using the HOPE computer code are presented. Major uncertainties in TOP analysis are identified and discussed with emphasis on the need for reliable fuel failure criteria. A series of calculations illustrating the possible behavior of the U.S. LMFBR demonstration plant following a loss-of-flow (LOF) accident without scram using the SAS-IIIA computer code are described. It is shown that for a beginning of life (BOL) core and end of equilibrium cycle (EOEC) core, the reactivity effects from sodium voiding and clad motion can lead to further sustained reactivity additions from subsequent fuel motion and FCI driven sodium voiding. In these calculations we have used the fuel enthalpy criterion which predicts clad failure around the core midplane. For the EOEC case these effects can add sufficient reactivity to take the system above prompt-critical (LOF driven TOP) and into hydrodynamic disassembly. For the BOL case the sodium void may not be sufficient to bring the system near sustained prompt-critical. However, clad motion appears to be effective in raising the reactivity to prompt-criticality. These results are based on clad failure dynamics modeling in SAS-IIIA. Further work is needed in the area of fuel-clad behavior under severe transients before definitive conclusions can be drawn regarding the applicability of current clad failure models at high clad temperatures (>1000°C). The potential significance of a new concept in CDA analysis called the “transition phase” is briefly mentioned. 相似文献
4.
The SIMBATH out-of-pile experiments simulate severe accidents in fast breeder reactors. In the tests the nuclear energy released is substituted by the exothermal energy of a thermite reaction. Single pin and small bundle experiments as well as freezing tests are performed. Material ejected from the fuel rod simulators in an early phase is finely dispersed. A portion penetrates the upper breeding zone without freezing. The bulk of molten material ejected afterwards leads to blockages in the colder zones of the bundle. Under these conditions bottled-up situations may occur in the SIMBATH experiments. Residual sodium may become entrapped. The current version of the computer code CALIPSO developed to interpret these experiments is verified by calculation of two single pin experiments. The computations show that the relocation mechanisms in the SIMBATH experiments are mainly controlled by expansion of noncondensible gases originally existing inside the pins. The contribution from fuel vapour pressure or from sodium evaporation due to fuel-coolant-interaction is of less importance during the first 100 ms after fuel pin failure. 相似文献
5.
The safety features of the gas-cooled fast breeder reactor (GCFR) are described in the context of the 300-MW(e) demonstration plant design. They are of two general types, inherent and design-related. The inherent features are principally associated with the helium coolant and the nuclear coefficients. Design-related features influencing safety include shutdown systems, residual heat removal systems, method of core support, and the prestressed concrete reactor vessel (PCRV). This paper discusses the safety-related aspects of each of these. Recently completed residual heat removal system reliability studies are also discussed. The probability of residual heat removal system failure in the GCFR is found to be lower than that described for light water reactors. The safety characteristics of larger plants are examined, and increases in size are found to improve GCFR safety margins. 相似文献
6.
E.M. Bohn S.K. Bhattacharyya L.G. Lesage R.B. Pond R.A. Moore A.L. Hess R.J. Cerbone 《Nuclear Engineering and Design》1977,40(1)
This paper presents results of measurements and calculations of physics parameters in the first gas-cooled fast breeder reactor (GCFR) critical assemblies in the US, a program of experiments conducted on the ZPR-9 facility at Argonne National Laboratory. Through a progressive three-phase series of assemblies, the major features unique to GCFR physics due to the gaseous coolant, and the resulting hard neutron spectrum and greater leakage, were investigated. Phases I and II were simple-geometry, uniform-core assemblies providing tests of nuclear data and GCFR design methods for fast reactors with large void fractions. The Phase III core simulates a GCFR design with three enrichment zones. This report primarily concerns the results obtained in Phase II.In addition to the usual central indices, reaction rate mappings, etc. these initial studies have provided the first experimental data on reactivity coefficients relevant to GCFR safety, such as worths of fuel, control, and cladding materials, Doppler effect, and coolant (helium) depressurization worth. Effects of steam ingress into coolant channels (due to a hypothesized steam generator leak) were simulated using polyethylene. The physics information obtained is providing a valuable base for verification of GCFR design and safety analyses. 相似文献
7.
This report summarizes an analysis of reactivity insertion mechanisms in the gas-cooled fast breeder reactor (GCFR). Inherent reactivity feedback mechanisms are identified and their effects on reactor start-up, during normal operation, and on anticipated and postulated transients are analyzed. Potential sources of accidental reactivity insertions and the resulting transients are investigated, including potential reactivity effects due to cladding and fuel melting. All nuclear calculations are based on the ENDF-B, Version 3, cross-section file. It is concluded from these analyses that the GCFR is an inherently stable reactor during start-up and normal operation. Potential accidental reactivity insertions are mild, and in each case the reactor can be controlled with a substantial margin for fuel melting or cladding damage. In low-probability accident sequences which lead to core melting, there are potential fuel motion mechanisms which can mitigate reactivity effects and accident consequences. 相似文献
8.
The gas-cooled fast breeder reactor (GCFR) component development program is based on an extension of high temperature gas-cooled reactor (HTGR) component technology; therefore, the GCFR development program is addressed primarily to components which differ in design and requirements from HTGR components. The principal differences in primary system components are due to the increase in helium coolant pressure level, which benefits system size and efficiency in the GCFR, and differences in the reactor internals and fuel handling systems due to the use of the compact metal-clad core.The purpose of this paper is to present an overview of the principal component design differences between the GCFR and HTGR and the consequent influences of these differences on GCFR component development programs. Development program plans are discussed and include those for the prestressed concrete reactor vessel (PCRV), the main helium circulator and its supporting systems, the steam generators, the reactor thermal shielding, and the fuel handling system. Facility requirements to support these development programs are also discussed. Studies to date show that GCFR component development continues to appear to be incremental in nature, and the required tests are adaptations of related HTGR test programs. 相似文献
9.
Breeder-reactor fuel-cycle analysis can be divided into four different areas or categories. The first category concerns questions about the spatial variation of the fuel composition for single loading intervals. Questions of the variations in the fuel composition over several cycles represent a second category. Third, there is a need for a determination of the breeding capability of the reactor. The fourth category concerns the investigation of breeding and long-term fuel logistics. Two fuel-cycle models used to answer questions in the third and fourth area are presented.The space- and time-dependent actinide balance, coupled with criticality and fuel-management constraints, is the basis for both the Discontinuous Integrated Fuel-Cycle Model and the Continuous Integrated Fuel-Cycle Model. These models are derived by formally condensing the base equations through spatial integration. Cycle-average isotopic microscopic reaction rate and reactivity-worth coefficients, based on equilibrium behavior, complete the derivation of the discontinuous model. Approximating the discontinuous reload with continuous charge and discharge currents transforms the discontinuous model into the more mathematically elegant continuous model.The results of the continuous model are compared with results obtained from detailed two-dimensional space and multigroup depletion calculations. The continuous model yields nearly the same results as the detailed calculation, and this is with a comparatively insignificant fraction of the computational effort needed for the detailed calculation. Thus, the integrated model presented is an accurate tool for answering questions concerning reactor breeding capability and long-term fuel logistics. 相似文献
10.
M. Hudina 《Nuclear Engineering and Design》1977,40(1):133-141
The thermohydraulic performance of several types of rough surfaces proposed for use in the gas-cooled fast breeder reactor has been investigated experimentally at the Swiss Federal Institute for Reactor Research. Based on the tests, the most suitable roughness design has been defined. In addition to the thermohydraulic performance requirements, some other technological and operational criteria should be used for the final choice of roughness. There is not sufficient information on the different roughening methods to enable any decision to date, but when the new complex thermohydraulic performance criterion is considered, additional requirements become relatively more important. 相似文献
11.
Yu. E. Bagdasarov 《Atomic Energy》2010,108(3):165-169
The definitions and requirements of normative documents for unanticipated accidents at nuclear power plants with fast reactors are analyzed. Definitions are constructed between one another and with a collection of scenarios which can lead to unanticipated accidents, likewise determined by normative documents independently of the probability of these accidents actually happening. It is concluded that the normative approaches to fast-reactor safety must be refined with respect to strengthening the probabilistic criteria as a tool limiting the list of required unanticipated accidents for validating reactor safety. Special attention is devoted to the need to strengthen the motivation of designers to make the maximum possible use of passively triggered safety systems. 相似文献
12.
The FAST code system is a general tool for analyzing advanced reactors from the viewpoint of the static and dynamic behavior of the whole reactor system. It includes an integrated three-dimensional representation of the core neutronics, appropriate modeling of the core thermal-hydraulics and fuel pin behavior, coupled to models of the reactor primary and secondary systems. Use is made largely of well-established individual neutronic, thermal-hydraulic and fuel behavior modules. Clearly, it is important to verify the individual parts of the code, including the links between them. The paper is focused on this detailed verification procedure. Steady-state conditions, as well as the transient behavior of hypothetical reactivity-initiated accidents, are investigated for two specific gas-cooled fast reactors. While the first system, a CO2-cooled CAPRA-CADRA core, is loaded with Superphénix-like MOX fuel, the second system being analyzed, a He-cooled Generation IV-like core, uses ceramic (U,Pu)C fuel dispersed in a silicon-carbide matrix. In the current study, the TRAC/PARCS elements of FAST are compared with the 3D-kinetics stand-alone ERANOS/KIN-3D code, which is considered state-of-the-art, using as far as possible equivalent options. A new methodology is proposed to improve a diffusion-theory, coarse-group PARCS-solution by scaling the original cross-section derivatives and input kinetic parameters. 相似文献
13.
M.G. Hemanath C. MeikandamurthyV. Ramakrishnan K.K. RajanM. Rajan G. Vaidyanathan 《Annals of Nuclear Energy》2007
In the pool type fast reactors the roof structure is penetrated by a number of pumps and heat exchangers that are cylindrical in shape. Sandwiched between the free surface of sodium and the roof structure, is stagnant argon gas, which can flow in the annular space between the components and roof structure, as a thermosyphon. These thermosyphons not only transport heat from sodium to roof structure, but also result in cellular convection in vertical annuli resulting in circumferential temperature asymmetry of the penetrating components. There is need to know the temperature asymmetry as it can cause tilting of the components. Experiments were carried out in an annulus model to predict the circumferential temperature difference with and without sodium in the test vessel. Three-dimensional analysis was also carried out using PHOENICS CFD code and compared with the experiment. This paper describes the experimental details, the theoretical analysis and their comparison. 相似文献
14.
Akihiro Ishimi Kozo Katsuyama Yoshiyuki Kihara Hirotaka Furuya 《Journal of Nuclear Science and Technology》2016,53(7):951-956
Three fuel rods containing hollow mixed oxide (MOX) pellets of uranium and plutonium oxides were fabricated and irradiated at a high linear heat rate (LHR) to burn-up of nearly 30,000 MWd/t in the experimental fast rector, JOYO MK-II. After irradiation, one of the fuel rod pellets was examined by X-ray CT and conventional nondestructive and destructive methods.
Swelling rate was evaluated by both dimensional change and radial density distribution. There were no differences between both types of results and it was concluded that swelling rate can be examined in detail by the X-ray CT technique without dismantling the assembly. In addition, the swelling rate of hollow pellets was nearly the same as values reported for the fuel rods containing solid pellets. LHR was higher in the examined fuel rod containing hollow pellets than in the conventional fuel rod containing solid pellets, but fission gas release rates for both fuel rods were nearly the same. 相似文献
15.
16.
This study evaluates advanced Gas-cooled Fast Reactor (GFR) fuel cycle scenarios which are based on recycling spent nuclear fuel for the sustainability of nuclear energy. A 600 MWth GFR was used for the fuel cycle analysis, and the equilibrium core was searched with different fuel-to-matrix volume ratios such as 70/30 and 60/40. Two fuel cycle scenarios, i.e., a one-tier case combining a Light Water Reactor (LWR) and a GFR, and a two-tier case using an LWR, a Very High Temperature Reactor (VHTR), and a GFR, were evaluated for mass flow and fuel cycle cost, and the results were compared to those of LWR once-through fuel cycle. The mass flow calculations showed that the natural uranium consumption can be reduced by more than 57% and 27% for the one-tier and two-tier cycles, respectively, when compared to the once-through fuel cycle. The transuranics (TRU) which pose a long-term problem in a high-level waste repository, can be significantly reduced in the multiple recycle operation of these options, resulting in more than 110 and 220 times reduction of TRU inventory to be geologically disposed for the one-tier and two-tier fuel cycles, respectively. The fuel cycle costs were estimated to be 9.4 and 8.6 USD/MWh for the one-tier fuel cycle when the GFR fuel-to-matrix volume ratio was 70/30 and 60/40, respectively. However the fuel cycle cost is reduced to 7.3 and 7.1 USD/MWh for the two-tier fuel cycle, which is even smaller than that of the once-through fuel cycle. In conclusion the GFR can provide alternative fuel cycle options to the once-through and other fast reactor fuel cycle options, by increasing the natural uranium utilization and reducing the fuel cycle cost. 相似文献
17.
An investigation has been conducted to determine theoretically the dynamic response of the GCFR core support structural assembly when subjected to boundary excitation from seismic disturbances. The system analyzed consists of a thick grid plate to which many core elements are vertically attached. The dynamic problem was solved by synthesizing component modes of two substructures and treating them as continuous subsystems. The investigation is of practical significance in the sense that the radial responses of the core elements in axisymmetric motions cause reactivity change of the core, and therefore an accurate assessment of the dynamic response of the system is important to the core and core support structure design. Numerical system modal data and time-history response results are presented. 相似文献
18.
J Wessels 《Nuclear Engineering and Design》1991,130(1)
By using sodium as coolant special boundary conditions result for the inservice inspection (ISI) of fast breeder reactors. For that reason in general it is not successful applying the methods and equipment proved for the 151 of light water reactors.This report presents inspection methods and equipment developed for the ISI of the reactor block of sodium cooled fast breeder reactors. The survey takes into account the state of the art as well as some R&D-work at home and abroad. Entering into particulars the methods and equipment used for leak monitoring, the inspection of the reactor vessel wall, the inspection' of reactor internals above and below the sodium level, monitoring of structure home noise and the measurement of the gap between the reactor vessel and the guard vessel are described. 相似文献
19.
The fuel element design for a 300 MW(e) gas cooled fast breeder reactor (GCFR) is presented. The design is the result of a program sponsored by Kernforschungsanlage, Julich (KFA) to develop and fabricate a full size fuel element model under extension of an agreement between General Atomic (GA), Kraftwerk Union (KWU), and KFA to exchange information from GCFR irradiation experiments. The resulting fuel element model design was achieved by joint participation between GA and KWU and relies on the experience and knowledge of the two companies. The model, which will be manufactured by KWU using prototypical materials and specifications, except for dummy fuel pellets, will establish manufacturing feasibility and identify areas for future cost reduction improvements. The evolved designs, particularly the fuel rods, are very similar to those employed in the liquid metal fast breeder reactor (LMFBR) programs. These similarities enable the GCFR to use the vast amount of data being generated for the LMFBR programs, with only an incremental development plan needed to verify certain unique features inherent to the use of helium as the primary coolant. 相似文献
20.
Results of fracture mechanics investigations on austenitic steels used for LMFBRs (Liquid Metal Fast Breeder Reactors) are presented. A summary of reported tests on straight piping and elbows with through wall flaws is given which agree well with predictions made by using a plastic instability model. Crack growth experiments and calculations indicate that initial flaws will not extend significantly during service. Even if considerable crack growth is postulated cracks will penetrate the piping wall with a high safety margin to unstable crack configurations. Theoretical investigations of flawed structures under high strains show that the effect of crack size can be discussed similarly to the elastic range. The information demonstrate that with respect to the design requirements and operating conditions of LMFBRs a sudden rupture of the piping can be excluded. The integrity of the coolant boundary is given also in case of initial flaws. 相似文献