首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new method for monitoring micro-electric discharge machining processes   总被引:2,自引:2,他引:0  
Micro-electric discharge machining (μ-EDM) is a very complex phenomenon in terms of its material removal characteristics since it is affected by many complications such as adhesion, short-circuiting and cavitations. This paper presents a new method for monitoring μ-EDM processes by counting discharge pulses and it presents a fundamental study of a prognosis approach for calculating the total energy of discharge pulses. For different machining types (shape-up and flat-head) and machining conditions (mandrel rotation and tool electrode vibration), the results obtained using this new monitoring method with the prognosis approach show good agreement between the discharge pulses number and the total energy of discharge pulses to the material removal and tool electrode wear characteristic in μ-EDM processes. On applying tool electrode vibration, the machining time becomes shorter, because it removes adhesion. The effect of tool electrode vibration in order to remove adhesion can be monitored with good results. In order to achieve high accuracy, the tool wear compensation factor has been successfully calculated, since the amount of tool electrode wear is different in each machining type and condition. Consequently, a deeper understanding of the μ-EDM process has been achieved.  相似文献   

2.
Nowadays, ultrasonic elliptical vibration cutting (UEVC) technique is being successfully applied for ultraprecision machining of difficult-to-cut materials. Previous study reported that the tool geometry especially tool nose radius notably influences the performance of 1D ultrasonic vibration cutting (UVC). However, the effect of tool nose radius in the UEVC technique is yet to be studied. This study aims to investigate the effects of tool nose radius on the UEVC performance in terms of cutting force, tool wear and surface finish when machining a hard-to-cut material, sintered tungsten carbide (WC), using PCD tools. The experimental results show that the UEVC technique performs remarkably better in all aspects at a 0.6 mm nose radius compared to a lower (e.g. 0.2 or 0.4 mm) and a higher nose radius (e.g. 0.8 mm). When machining about 412 mm2 surface area, an average surface roughness, Ra of 0.010 μm is achieved with a 0.6 mm nose radius. Analyses are conducted to justify the findings in this study.  相似文献   

3.
Ultrasonic vibration was applied to dielectric fluid by a probe-type vibrator to assist micro electrical discharge machining of deep micro-holes in ceramic materials. Changes of machined hole depth, hole geometry, surface topography, machining stability and tool material deposition under various machining conditions were investigated. Results show that ultrasonic vibration not only induces stirring effect, but also causes cloud cavitation effect which is helpful for removing debris and preventing tool material deposition on machined surface. The machining characteristics are strongly affected by the vibration amplitude, and the best machining performance is obtained when carbon nanofibers are added into the vibrated dielectric fluid. As test pieces, micro-holes having 10 μm level diameters and high aspect ratios (>20) were successfully fabricated on reaction-bonded silicon carbide in a few minutes. The hybrid EDM process combining ultrasonic cavitation and carbon nanofiber addition is demonstrated to be useful for fabricating microstructures on hard brittle ceramic materials.  相似文献   

4.
Study on ultrasonic-assisted lapping of gears   总被引:3,自引:0,他引:3  
Ultrasonic-assisted lapping of gears is firstly proposed and compared with conventional lapping in material removal process and mechanism. The material removal mechanisms of the ultrasonic lapping include hammering, impacting and acoustic cavitation. The experiments showed that the material removal rate of ultrasonic lapping is nearly three times that of the conventional lapping in the same condition, and the ultrasonic lapping can produce a better tooth surface quality (Ra=0.2 μm and the section height c=1.2 μm) than the conventional lapping (Ra=0.33 μm and c=3.2 μm). Then a set of parametric experiments for the ultrasonic lapping was conducted with the Taguchi experimental design. The results of this set of experiments reveal that the optimum conditions for a high removal rate in the ultrasonic lapping experiments of spiral-bevel gears are of brake torque, 0.12 Nm; pinion rotational speed, 600 rpm; and slurry concentration with 20%. The contributions by percentage of torque, speed and concentration to the removal rate are 8.13, 19.26 and 68.11, respectively.  相似文献   

5.
Servo scanning 3D micro-EDM based on macro/micro-dual-feed spindle   总被引:2,自引:1,他引:1  
Using the end discharge of micro-rod-shaped electrode to scan layer by layer, micro-electrical discharge machining (EDM) can fabricate complex 3D micro-structures. During the machining process, the discharge state is broken frequently due to the wear of the tool electrode and the relative scanning motion. To keep a favorable discharge gap, the feed spindle of the tool electrode needs the characteristics of high-frequency response and high resolution. In this study, an experimental system with a macro/micro-dual-feed spindle was designed to improve the machining performance of servo scanning 3D micro-EDM (3D SSMEDM), which integrates an ultrasonic linear motor as the macro-drive and a piezoelectric (PZT) actuator as micro-feeding mechanism. Based on LabVIEW and Visual C++ software platform, a real-time control system was developed to control coordinately the dual-feed spindle to drive the tool electrode. The micro-feed motor controls the tool electrode to keep the favorable discharge gap, and the macro-drive motor realizes long working range by a macro/micro-feed conversion. The emphasis is paid on the process control of the 3D SSMEDM based on macro/micro-dual-feed spindle for higher machining accuracy and efficiency. A number of experiments were carried out to study the machining performance. According to the numerical control (NC) code, several typical 3D micro-structures have been machined on the P-doped silicon chips. Our study results show that the machining process is stable and the regular discharge ratio is higher. Based on our fundamental machining experiments, some better-machined effects have been gained as follows. By machining a micro-rectangle cavity (960 μm×660 μm), the machined depth error can be controlled within 2%, the XY dimensional error is within 1%, the surface roughness Ra reaches 0.37 μm, and the material removal rate is about 1.58×104 μm3/s by using a tool electrode of Φ=100 μm in diameter. By machining multi-micro-triangle cavities (side length 700 μm), it is known that the machining repeatability error is <0.7%.  相似文献   

6.
Because of its excellent anodic bonding property and surface integrity, borosilicate glass is usually used as the substrate for micro-electro mechanical systems (MEMS). For building the communication interface, micro-holes need to be drilled on this substrate. However, a micro-hole with diameter below 200 μm is difficult to manufacture using traditional machining processes. To solve this problem, a machining method that combines micro electrical-discharge machining (MEDM) and micro ultrasonic vibration machining (MUSM) is proposed herein for producing precise micro-holes with high aspect ratios in borosilicate glass. In the investigations described in this paper, a circular micro-tool was produced using the MEDM process. This tool was then used to drill a hole in glass using the MUSM process. The experiments showed that using appropriate machining parameters; the diameter variations between the entrances and exits (DVEE) could reach a value of about 2 μm in micro-holes with diameters of about 150 μm and depths of 500 μm. DVEE could be improved if an appropriate slurry concentration; ultrasonic amplitude or rotational speed was utilized. In the roundness investigations, the machining tool rotation speed had a close relationship to the degree of micro-hole roundness. Micro-holes with a roundness value of about 2 μm (the max. radius minus the min. radius) could be obtained if the appropriate rotational speed was employed.  相似文献   

7.
Electric discharge machining (EDM) has been proven as an alternate process for machining complex and intricate shapes from the conductive ceramic composites. The performance and reliability of electrical discharge machined ceramic composite components are influenced by strength degradation due to EDM-induced damage. The success of electric discharge machined components in real applications relies on the understanding of material removal mechanisms and the relationship between the EDM parameters and formation of surface and subsurface damages. This paper presents a detailed investigation of machining characteristics, surface integrity and material removal mechanisms of advanced ceramic composite Al2O3–SiCw–TiC with EDM. The surface and subsurface damages have also been assessed and characterized using scanning electron microscopy (SEM). The results provide valuable insight into the dependence of damage and the mechanisms of material removal on EDM conditions.  相似文献   

8.
Vitreous bond silicon carbide wheel for grinding of silicon nitride   总被引:1,自引:0,他引:1  
This study investigates the grinding of sintered silicon nitride using a SiC wheel with a fine abrasive grit size and dense vitreous bond. The difference of hardness between the green SiC abrasive and sintered Si3N4 workpiece (25.5 vs. 13.7 GPa) is small. Large grinding forces, particularly the specific tangential grinding forces, are observed in SiC grinding of Si3N4. The measured specific grinding energy is high, 400–6000 J/mm3, and follows an inverse relationship relative to the maximum uncut chip thickness as observed in other grinding studies. The SiC wheel wears fast in grinding Si3N4. The G-ratio varies from 2 to 12. Two unique features in SiC grinding of Si3N4 are the trend of increasing G-ratio at higher material removal rate and the excellent surface integrity, with 0.04–0.1 μm Ra and no visible surface damage. For a specific material removal rate, surface cracks along the grinding direction are generated on the ground surface. The problem of chatter vibration was identified at high material removal rates. Periodic and uneven wheel loading marks and clusters of workpiece surface cracks across the grinding direction could be observed at high material removal rates. This study demonstrates that the SiC grinding wheel can be utilized for precision form grinding of Si3N4 to achieve good surface integrity under a limited material removal rate.  相似文献   

9.
Workpiece surface modification using electrical discharge machining   总被引:1,自引:0,他引:1  
Electrical discharge machining (EDM) is a widely used process in the mould / die and aerospace industries. Following a brief summary of the process, the paper reviews published work on the deliberate surface alloying of various workpiece materials using EDM. Details are given of operations involving powder metallurgy (PM) tool electrodes and the use of powders suspended in the dielectric fluid, typically aluminium, nickel, titanium, etc. Following this, experimental results are presented on the surface alloying of AISI H13 hot work tool steel during a die sink operation using partially sintered WC / Co electrodes operating in a hydrocarbon oil dielectric. An L8 fractional factorial Taguchi experiment was used to identify the effect of key operating factors on output measures (electrode wear, workpiece surface hardness, etc.). With respect to microhardness, the percentage contribution ratios (PCR) for peak current, electrode polarity and pulse on time were ˜24, 20 and 19%, respectively. Typically, changes in surface metallurgy were measured up to a depth of ˜30 μm (with a higher than normal voltage of ˜270 V) and an increase in the surface hardness of the recast layer from ˜620 HK0.025 up to ˜1350 HK0.025.  相似文献   

10.
This study introduces an abrasive jet polishing (AJP) technique in which the pneumatic air stream carries not only abrasive particles, but also an additive of either pure water or pure water with a specified quantity of machining oil. Taguchi design experiments are performed to identify the optimal AJP parameters when applied to the polishing of electrical discharge machined SKD61 mold steel specimens. A series of experimental trials are then conducted using the optimal AJP parameters to investigate the respective effects of the additive type and the abrasive particle material and diameter in achieving a mirror-like finish of the polished surface. The Taguchi trials indicate that when polishing is performed using pure water as an additive, the optimal processing parameters are as follows: an abrasive material to additive ratio of 1:2, an impact angle of 30°, a gas pressure of 4 kg/cm2, a nozzle-to-workpiece height of 10 mm, a platform rotational velocity of 200 rpm, and a platform travel speed of 150 mm/s. Applying these processing parameters, it is found that the optimal polishing effect is attained using #8000SiC abrasive particles and a 1:1 mixture of water-solvent machining oil and pure water. The experimental results show that under these conditions, the average roughness of the electrical discharge machined SKD61 surface is reduced from an original value of Ra=1.03 μm (Rmax: 7.74 μm) to a final value of Ra=0.13 μm (Rmax: 0.90 μm), corresponding to a surface roughness improvement of approximately 87%.  相似文献   

11.
Precision abrasive machining processes such as ultrasonic machining are commonly employed to machine glasses, single crystals and ceramic materials for various industrial applications. Until now, precision machining of hard and brittle materials are poorly investigated from the fundamental and applied point of views. Taking into account the major technological importance of this subject to the production of functional and structural components used in high performance systems, it is often desired to estimate the machining rate for productivity while maintaining the desired surface integrity. The success of this approach, however, requires not only the fundamental understanding of the material removal on the microstructural scale but also the relationship between the machining characteristics and material removal rate in ultrasonic machining. In this study, the ultrasonic machining of glass was investigated with respect to mechanism of material removal and material removal rate (with basic machining parameters) with a mild steel tool using boron carbide abrasive in water as slurry. The analysis indicates that the material removal was primarily due to the micro-brittle fracture caused on the surface of the workpiece. For micro-brittle fracture mode, the relationship for the material removal rate, considering direct impact of abrasive grains on the workpiece, based on a simple fracture mechanics analysis has been established. The effect of machining conditions on material removal rate has been discussed. This research provides valuable insights into the material removal mechanism and the dependence of material removal rate on machining conditions and mechanical properties of workpiece material in ultrasonic machining.  相似文献   

12.
Burnishing, a plastic deformation process, can be used to finish surfaces. Experimental work was conducted on a vertical machining centre to establish the effects of various ball burnishing parameters: depth of penetration, feed, ball material, burnishing speed and lubricant, on the surface roughness of AISI 1045 specimens. The ball materials used were WC and SUJ2. It was found that all the parameters studied affect the surface finish to varying degrees. The surface roughness parameter Rtm first decreases and then increases with increasing depth of penetration. The effects of feed and burnishing forces on the surface finish also showed similar trends. The effect of speed depends on the type of lubricant used. Grease is a better lubricant than cutting oil for the speed range of 450 mm min−1 to 1200 mm min−1. With appropriate selection of the process parameters, a pre-machined surface roughness of about 4 μm can be finished to approximately 0.7 μm.  相似文献   

13.
A vibration-assisted spherical polishing system driven by a piezoelectric actuator has been newly developed on a machining center to improve the burnished surface roughness of hardened STAVAX plastic mold stainless steel and to reduce the volumetric wear of the polishing ball. The optimal plane surface ball burnishing and vibration-assisted spherical polishing parameters of the specimens have been determined after conducting the Taguchi's L9 and L18 matrix experiments, respectively. The surface roughness Ra=0.10 μm, on average, of the burnished specimens can be improved to Ra=0.036 μm (Rmax=0.380 μm) using the optimal plane surface vibration-assisted spherical polishing process. The improvement of volumetric wear of the polishing ball was about 72% using the vibration-assisted polishing process compared with the non-vibrated polishing process. A simplified kinetic model of the vibration-assisted spherical polishing system for the burnished surface profile was also derived in this study. Applying the optimal plane surface ball burnishing and vibrated spherical polishing parameters sequentially to a fine-milled freeform surface carrier of an F-theta scan lens, the surface roughness of Ra=0.045 μm (Ry=0.65 μm), on average, within the measuring range of 149 μm×112 μm on the freeform surface, was obtainable.  相似文献   

14.
电火花加工小孔存在电蚀产物排出效率低导致加工效率低、电蚀产物排除导致二次放电现象影响加工精度等问题,而超声振动在工作液中产生空化效应和泵吸作用,能大幅提高电火花的排屑和消电离能力,进而在很大程度上减少上述问题的发生。设计一套工作液超声振动辅助电火花小孔加工装置,主要包括主轴系统、微三维运动平台、超声振动工作液槽和数据采集系统,其中主轴系统包括NSK电主轴、引电结构、工具电极装夹结构,可以实现工具电极的高速旋转;基于LabVIEW开发了电火花小孔加工控制系统,主要包括初始化模块、粗定位模块、恒电压对刀模块、实时电压分段控制加工模块和实时显示模块。开展了工作液超声振动辅助电火花小孔加工试验研究,试验结果表明:随电火花加工电压的增加,工件材料去除率和电极损耗率都趋于增大。  相似文献   

15.
基于纤维增强复合材料的超声振动辅助加工技术综述   总被引:1,自引:0,他引:1  
史振宇  崔鹏  李鑫  万熠  袁杰  蔡玉奎 《表面技术》2019,48(1):305-319
纤维增强复合材料是一类使用范围不断扩大的具有优良机械性能的工程复合材料,但由于其具有各向异性及增强体纤维稳定的理化性能,使得传统金属加工方法很难对纤维增强复合材料进行高质量的加工,特别是对于以芳纶纤维等断裂伸长率较高的纤维为增强体的复合材料,存在较为严重的撕裂、毛刺和分层等加工缺陷。超声振动辅助加工是一种将超声振动附加在机械加工过程中的加工方式。超声振动的加入可使刀具与工件周期性接触,减小切削阻力,降低切削温度,可在一定程度上提高纤维增强复合材料加工的表面质量,减少加工缺陷。在介绍超声振动辅助技术的分类、系统组成和加工机理,及纤维复合材料表面质量、材料去除、加工机理和加工缺陷的基础上,从套料制孔、螺旋铣孔和轮廓铣削三类常见加工工艺方面,论述了针对纤维复合材料的超声振动辅助切削技术的国内外研究进展。基于纤维复合材料超声振动辅助切削技术的发展状况,从基础理论研究、材料表面改性和新加工工艺探索、超声振动加工系统的开发完善等方面,总结了现有研究和应用中的成果及普遍存在的问题,同时对未来研究的发展趋势做出了展望。  相似文献   

16.
A new approach to cutting state monitoring in end-mill machining   总被引:2,自引:1,他引:1  
A new cutting state monitoring approach is proposed for the real-time predicting of the machining trouble and the surface quality of the machined products. In this approach, the relationships among the mechanical model of cutting process and its corresponding time series model, the surface roughness of the machined workpiece are evaluated through theoretical analysis and experimental investigation. It is therefore revealed that there is the linear relationships among the AR parameter a1, the stiffness k3 of cutting model and surface roughness Pz, and consequently the cutting process state can be estimated by only monitoring time series parameter a1 of vibration signal measured during machining operation. In particular, it was found that the variation in the surface roughness of Pz=3–5 μm can be fully monitored.  相似文献   

17.
This study is carried out to investigate the material removal characteristics in elliptical ultrasonic assisted grinding (EUAG) of monocrystal sapphire using single diamond abrasive grain. The scratching experiments are performed to develop a fundamental understanding of the ductile–brittle transition mechanism during EUAG of monocrystal sapphire. An elliptical ultrasonic vibrator attached with a sapphire substrate was set up on a multi-axis CNC controlled machining center equipped with a single point diamond tool. The vibrator was constructed by bonding a piezoelectric ceramic device (PZT) having two separated electrodes on a metal elastic body, and an elliptical ultrasonic vibration was generated on the end-face of the metal elastic body when two phases of alternating current (AC) voltages with a phase difference are applied to their respective electrodes on PZT. In scratching experiments, the effects of ultrasonic vibration on the critical depth of cut ac for the ductile–brittle transition region and the material removal ratio, i.e., the ratio of the removed material volume to the machined groove volume, fab, are investigated by the examination of the scratching groove surfaces with SEM and AFM. The obtained results show that the critical depth of cut in EUAG is much larger than that in conventional grinding without vibration (CG), and even the bigger vibration amplitude leads to a greater improvement. Although the values of fab in the ductile–brittle transition region in both EUAG and CG are less than 1, that in EUAG is bigger than that in CG. Furthermore, as the vibration amplitude increases, the value of fab is increased to eventually be close to 1. These show that it is prone to achieve a ductile mode grinding in greater vibration amplitude. It was also found that in the process there are two kinds of material removal modes, i.e., continuous cutting and discontinuous cutting modes, which are determined by the relationship between values of vibration amplitude and depth of cut. This study validates that the elliptical ultrasonic assisted grinding method is highly effective in ductile mode machining of hard and brittle materials.  相似文献   

18.
The ultrasonic vibration assisted drilling of Inconel 718 superalloy is studied in this paper. The tool holder of a machining center is retrofitted so that axial resonant vibration can be provided. Experimental results show that the chip size is reduced, and the variation of torque in drilling becomes smaller. These phenomena are particularly apparent at the final stage of a drill's usable life. It is also found that there is little improvement in drilling performance when the frequency of the ultrasonic vibration is varied. On the contrary, a drill's life is greatly increased when the vibration with a smaller amplitude is applied. But too large a vibration amplitude, such as over 12 μm in this study, could lead to negative effects. For the testing conditions, the frequency of 31.8 kHz and the amplitude of 4 μm result in the best drill life and quality of the drilled hole in this study. Under this condition a drill's life is prolonged by as much as 2.7 times of that without vibration assisted drilling process. Concerning drilling efficiency, it is found that by applying ultrasonic vibration assisted drilling, lifting of the drill for chip removal as commonly employed in conventional drilling of a high aspect ratio hole is not necessary, and saving of the working time is obtained.  相似文献   

19.
In microhole machining of metal, micro electro-discharge machining (MEDM) is an effective method that can easily create a hole with a diameter under 100 μm. Due to the poor surface quality and shape of MEDM, a machining method that compounds MEDM and micro ultrasonic vibration lapping (MUVL) is proposed here to allow the production of high precision microholes with high aspect ratios. In our investigations, first, a circular or stepped circular microtool was made by the MEDM process, and the tool was used to create a microhole on a small piece of titanium plate in the same machining process. Finally, the abrasive particles driven by the same tool were utilized to grind this hole in the MUVL procedure, and a hole with a diameter about 100 μm can be obtained. Owing to the microtool and workpiece not taking apart from the clamping apparatus during different machining steps, the microhole was processed in the co-axial situation, so the precise shape and perfect surface can be obtained easily. For example, the diameter variation between the entrances and exits of the microholes could reach a value of about 5 μm when the workpiece had a thickness of 500 μm, if the circular microtools was used. Meanwhile, the roundness of the microholes clearly improved, regardless of whether circular or stepped tools were used. However, owing to the perfect grinding effect between the microholes and microtools, the stepped circular tools produced high quality surfaces more easily than the circular tools.  相似文献   

20.
The main focus of this study is to identify the most influential and common sensory features for the process quality characteristics in CNC milling operations—dimensional accuracy (bore size tolerance) and surface roughness—using three different material types (6061-T6 aluminum, 7075-T6 aluminum, and ANSI-4140 steel). The materials were machined on a vertical CNC mill, retrofitted with multiple sensors and data acquisition systems, to investigate the effects of variations in material types and machining parameters. The sensor data include cutting force measurements, spindle quill vibration, and acoustic emission, each of which further divided into measurable components, such as x, y, and z components in cutting force, x and y spindle quill vibration, DC, AC, and Count Rate for acoustic emission signals. Those components were filtered and analyzed to determine the sensory features that best correlate with process quality characteristics. Tool wear rate and machining characteristics appeared differently, depending on the material types, yet some components of the sensory data were found to be significant with relation to the variations in bore size and surface roughness for all three types of materials. This suggests that even under the varying cutting conditions involving different materials, the identified sensory features can be used for the reliable and accurate control of milling operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号