首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
Au films with a thickness of about 300 nm were deposited on SiO2/Si(100) and mica substrates by dc sputtering. X-ray diffraction spectroscopy and field emission scanning electron microscopy were used to analyze the structure and internal stress of the Au films. The films grown on SiO2/Si(100) show a preferential orientation of [111] in the growth direction. However the films grown on mica have mixture crystalline orientations of [111], [200], [220] and [311] in the growth direction and the orientations of [200] and [311] are slightly more than those of [111] and [220]. An internal stress in the films grown on SiO2/Si(100) is tensile. For Au films grown on mica the internal stresses in the [111]-and [311]-orientation grains are compressive while those in the [200]- and [220]-orientation grains are tensile. Au films grown SiOJSi(100) have some very large grains with a size of about 400 nm and have a wider grain size distribution compared with those grown on mica.  相似文献   

2.
Amorphous silicon ( a-Si ) thin films were deposited on glass substrate by PECVD, and polycrystalline silicon ( poly- Si ) thin films were prepared by aluminum- induced crystallization ( AlC ). The effects of annealing temperature on the microstructure and morphology were investigated. The AlC poly-Si thin films were characterized by XRD, Raman and SEM. It is found that a-Si thin film has a amorphous structure after annealing at 400℃ for 20 min, a-Si films begin to crystallize after annealing at 450 ℃ for 20 min, and the crystallinity of a-Si thin films is enhanced obviously with the increment of annealing termperature.  相似文献   

3.
A simple and easily operated technique was developed to fabricate GaN films. GaN films possessing hexagonal wurtzite structure were fabricated on Si(111) substrates with ZnO buffer layers through nitriding Ga2O3 films in the tube quartz furnace. ZnO buffer layers and Ga3O3 films were deposited on Si substrates in turn by using radio frequncy magnetron sputtering system before the nitriding process. The structure and composition of GaN films were studied by X-ray diffraction, selected area electron diffraction and Fourier transform infrared spectrophotometer. The morphologies of GaN films were studied by scanning electron microscopy. The results show that ZnO buffer layer improves the crystalline quality and the surface morphology of the films relative to the films grown directly on silicon substrates. The measurement result of room-temperature photoluminescence spectrum indicates that the photoluminescence peaks locate at 365 nm and 422 nm.  相似文献   

4.
Cu3N and Al Cu3N films were prepared with reactive magnetron sputtering method. The two films were deposited on glass substrates at 0.8 Pa N2 partial pressure and 100 ℃ substrate temperature by using a pure Cu and AI target, respectively. X-ray diffraction (XRD) measurements show that the un-doped film was composed of Cu3N crystallites with anti-ReO3 structure and adopted [111] preferred orientation. XRD shows that the growth of Al-doped copper nitride films (AlxCu3N) was affected strongly by doping AI, the intensity of [111] peak decreases with increasing the concentration of Al and the high concentration of Al could prevent the Cu3N from crystallization. AFM shows that the surface of AlCu3N film is smoother than that of Cu3N film. Compared with the Cu3N films, the resistivities of the Al-doped copper nitride films (AlxCu3N) have been reduced, and the microhardness has been enhanced.  相似文献   

5.
TiO2 thin films were prepared with Ti2O3, Ti3O5 and TiO2 as raw materials, by electron-beam evaporation deposition, using O^2- ion beam ( O2 purity up to 99.99% ) as auxiliary means. The crystal structures of the samples were inspected by the X-ray diffraction (XRD) method, and the evaporation character of warious raw materials was analyzed. Transmittance spectra were measured through a U-3310 spectrophotometer ( wavelength ranging from 200 nm to 900 nm). The refractive index n and the thickness of films were determined from transmission spectra. The experimental results show that the thin films taking Ti2O3 as their raw material have a strong absorption, when taking Ti3O5 and TiO2 as raw materials, the thin films would have good optical properties. The experiments also show that, the crystal structure of all thin films is amorphous before post-annealing and the Ti3O5 is a congruent evaporation phase in the Ti-O system.  相似文献   

6.
Highly conductive IrO2 thin films were prepared on Si (100) substrates by means of pulsed laser deposition technique from an iridium metal target in an oxygen ambient atmosphere. Emphasis was put on the effect of oxygen pressure and substrate temperature on the structure, morphology and resistivity of IrO2 films. It was found that the above properties were strongly dependent on the oxygen pressure and substrate temperature. At 20 Pa oxygen ambient pressure, pure polycrystalline IrO2 thin films were obtained at substrate temperature in the 300-500℃ range with the preferential growth orientation of IrO2 films changed with the substrate temperature. IrO2 films exhibited a uniform and densely packed granular morphology with an average feature size increasing with the substrate temperature. The room-temperature resistivity variations of IrO2 films correlated well with the corresponding film morphology changes. IrO2 films with the minimum resistivity of (42 ±6)μΩ·cm was obtained at 500℃.  相似文献   

7.
In this work, the influence of crystal structure on the friction coefficient of zinc oxide(ZnO) films was studied. The ZnO films were deposited on a Si(100) substrate using an atomic layer deposition process, and the crystal structure of the ZnO films was changed by adjusting the substrate temperature. The surface morphology and the crystal structure of the Zn O films were measured by an atomic force microscope and an X-ray diffractometer, respectively, and the friction coefficient of the ZnO films was measured by a ball-on-disk dry sliding tester. The results show that the ZnO films deposited at substrate temperatures below 200°C are dominated by(100),(002) and(101)-orientated crystals, while the ZnO films deposited at substrate temperatures above 250°C are dominated by(002)-orientated crystals, and that the crystal structure influences the friction coefficient of ZnO films greatly. The ZnO films with(002)-orientated crystals possess a larger friction coefficient than those with other orientated crystals. In order to verify this conclusion, we measured the friction behavior of the ZnO single crystals with different orientations. The results are consistent well with our conclusion.  相似文献   

8.
The preparation of high quality ZnO/Si substrates for the growth of GaN blue light emitting materials is considered. ZnO thin films have been deposited on Si (100) and Si (111) substrates by conventional magnetron sputtering. Morphology, crystallinity and c-axis preferred orientation of ZnO thin films have been investigated by transmitting electron microscopy (TEM), X-ray diffraction (XRD) and X-ray rocking curve (XRC). It is proved that the ZnO thin films have perfect structure. The full-width-at-half-maximum (FWHM) of the ZnO(002) XRC of these films is about 1°, while the minimum is 0.353°. This result is better than the minimum FWHM (about 2°) reported by other research groups. Moreover, comparison and discussion are given on film structure of ZnO/Si(100) and ZnO/Si(111).  相似文献   

9.
Mesoporous silica films embedded with Ag nanoparticles were directly synthesized by a solgel dip-coating process, combining alkyl (ethylene oxide) surfactant as temple and tetraethoxysilane as inorganic precursor. The addition of Ag^+ ion to the reaction sol was prior to the formation of films, followed by the heat treatment at 150℃ led to the creation ofAg nanoparticies. The formation ofAg nanoparticles and the change of its surface plasma resonance absorption were characterized by Uv-vis. The small angle XRD test indicated that the films had an ordered hexagonal mesoporous structure, of which the unit cell parameter was about 4.26 nm. The TEM images and EDS spectra of the samples have directly verified the presence of mono-dispersed Ag nanoparticles within the films, due to the confine effects of mesopores.  相似文献   

10.
Ultrasonic Assisted SILAR method (UA-SILAR) was developed and highly oriented ZnO films were deposited on the glass substrate by this novel technique. The crystallinity and microstructure of as-deposited ZnO films were analyzed by means of XRD and SEM. Moreover, the underling deposition mechanism of ZnO films was discussed. Results show that obtained ZnO films exhibit an excellent crystallinity with the preferentioal orientation of (002) plane. The crystalline grain of films is about 40nm in size,which is supported by both the Sherrer equation and the SEM result. However, the ZnO film is composed of numerous clustered purticulates in the size of 200 to 300nm, and each particulate is the compact aggregation of smaller ZnO crystalline grains. It is .speculated that the excellent crystallinity of ZnO films may chiefly originate from the cavatition effect of the ultrasonic rinsing process.  相似文献   

11.
The magnetic properties and structures of [CoPt/Ag] n , multilayer films deposited by DC magnetron sputtering have been studied. During the deposited process, two kinds of deposited sequences, that is Ag layer (FDAG) first deposited or CoPt layer (FDCP) first deposited, have been chosen. The results show that the microstructures and coercivities were strongly influenced by the deposited sequence and the thickness of films. The coercivities of [Ag/CoPt] n with FDAG are obviously higher than those of [CoPt/Ag] n with FDCP. Especially, when the thickness of films is 8 nm, the difference of coercivities between the FDAG film and the FDCP film is the largest. It is possibly because Ag plays a role of underlayer in FDAG multilayers, which can induce both the transformation from fcc to fct and the oriented growth along c-axis. In addition, δM curves reveal that the [CoPt/Ag]8 multilayer, film has a lower intergrain interaction than the CoPt/Ag bilayer film.  相似文献   

12.
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) and Bi3.15Nd0.85Ti3O12 (BNT) thin films were fabricated on Pt/TiO2/SiO2/Si (100) substrates by a modified sol-gel technique. X-ray diffraction indicated that these films were of single phase with random polycrystalline orientations. The surface morphologies of the films were observed by scanning electron microscope, showing uniform, dense films with grain size of 50–100 nm. Well-saturated hysteresis loops of the films were obtained in metal-ferroelectric-metal type capacitors with Cu top electrodes at an applied voltage of 400 kV/cm, giving the remanent polarization (2P r) and coercive field (2E c) values of the films of 25.1 μC/cm2 and 203 kV/cm for BLT, and 44.2 μC/cm2 and 296 kV/cm for BNT, respectively. Moreover, these capacitors did not show fatigue behaviors after up to 1.75×1010 switching cycles at the test frequency of 1 MHz, suggesting a fatigue-free character. The influences of the La3+ and Nd3+ doping on the properties of the films were comparatively discussed. Supported by the National Key Basic Research and Development Program of China (Grant No. 2006CB932305) and the Natural Science Foundation of Hubei Province, China (Grant No. 2004ABA082)  相似文献   

13.
Titanium nitride (TiN) films were deposited on Si(100) substrates by laser molecular beam epitaxy(LMBE), and their properties of structure and resistivity with varying N2 pressure were investigated. The results showed that atomically flat TiN films with layer-by-layer growth mode were successfully grown on Si(100) substrates, and (200) was the preferred orientation. With the increasing of N2 pressure, the N/Ti ratio gradually increased and the diffraction peak progressively shifted towards lower diffraction angle. At pressure of 0.1 Pa, stoichiometric TiN film was formed which exhibited the characteristic diffraction angle of (200) plane. All films showed high reflectance to infrared spectrum and the films with overstoichiometry and understoichiometry had a higher resistivity owing to the surface particles and lattice distortion, while the stoichiometric TiN film depicted the minimum resistivity, around 19 μΩ·cm.  相似文献   

14.
(Ba0.4Pb0.3)Sr0.3TiO3 thin films were fabricated via pulsed laser deposition (PLD) technique on Pt/TiO2/SiO2/Si substrate. The crystallization of the films was characterized by XRD and FSEM, and the experimental results suggested deposition parameters, especially the deposition temperature was the key factor in forming the perovskite structure. The dielectric properties of the film deposited with optimized parameters were studied by an Agilent 4294A impedance analyzer at 1 MHz. The dielectric constant was 772, and the loss tangent was 0.006. In addition, the well-shaped hysteresis loop also showed that the film had a well performance in ferroelectric. The saturated polarization P, remnant polarization Pr and coercive field E were about 4.6 μC/cm2, 2.5 μC/cm2 and 23 kV/cm (the coercive voltage is 0.7 V), respectively. It is suggested the film should be a promising candidate for microwave applications and nonvolatile ferroelectric random access memories (NvFeRAMs).  相似文献   

15.
The Cu x Si1-x thin films have been grown by pulsed laser deposition (PLD) with in situ annealing on Si (001) and Si (111), respectively. The transformation of phase was detected by X-ray diffraction (XRD). The results showed that the as-deposited films were composed of Cu on both Si (001) and Si (111). The annealed thin films consisted of Cu + η”-Cu3Si on Si (001) while Cu + η’-Cu3Si on Si (111), respectively, at annealed temperature (T a) = 300-600 °C. With the further increasing of T a, at T a= 700 °C, there was only one main phase, η”-Cu3Si on Si (001) while η’-Cu3Si on Si (111), respectively. The annealed thin films transformed from continuous dense structure to scattered-grain morphology with increasing T a detected by field emission scanning electron microscope (FESEM). It was also showed that the grain size would enlarge with increasing annealing time (t a).  相似文献   

16.
High refractive index TiO2 thin films were deposited on BK7 glass by reactive electron—beam (REB) evaporation at pressure of 2×10−2 Pa, deposition rate of 0.2 nm/s and at various substrate temperatures from 120°C to 300°C. The refractive index and the thickness of the films were measured by visible spectroscopic ellipsometry (SE) and determined from transmission spectra. Optical properties and structure features were characterized by UV-VIS, SEM and XRD, respectively. The measurement and analysis on transmission spectra of all samples show that with the substrate temperature increasing from 120°C to 300°C, the refractive indices of thin films increase from 1.7 to 2.1 and the films after heat treatment have higher refractive indices due to its crystallizing. The XRD analysis results indicate that the structure of TiO2 thin films deposited on BK7 glass at substrate temperatures of 120°C, 200°C and 300°C is amorphous, after post-annealing under air condition at 400°C for 1 hour, the amorphous structure is crystallized, the crystal phase is of 100% anatase with strong preferred orientation (004) and the grain size of crystalline is within 3.6–8.1 nm, which is consistent with results from SEM observation. WANG Xue-hua: Born in 1976. Funded by the Youth Project Foundation of Hubei Provincial Education Department (No. 2003B00)  相似文献   

17.
Chrome-doped titanium oxide films were prepared by reactive magnetron sputtering method. The films deposited on glass slides at room temperature were investigated by atom force microscope, X-ray diffractometer, X-ray photoelectron spectroscopy, UV-Vis spectrophotometer, the photoluminescence (PL) and ellipse polarization apparatus. The results indicate that TiO2-Cr film exists in the form of amorphous. The prepared films possess a band gap of less than 3.20 eV, and a new absorption peak. The films, irradiated for 5 h under UV light, exhibit excellent photocatalytic activities with the optimum decomposition rate at 98.5% for methylene blue. Consequently, the thickness threshold on these films is 114 nm, at which the rate of photodegradation is 95% in 5 h. When the thickness is over 114 nm, the rate of photodegradation becomes stable. This result is completely different from that of crystalloid TiO2 thin film.  相似文献   

18.
Fe2O3/SiO2 nano-composite films were prepared by sol-gel technique combining heat treatment in the range of 100–900 °C. The particle size was observed by FE-SEM. Optical properties of the films were investigated by UV-visible spectra. Structural and magnetic characteristics were investigated through FT-IR and VSM. The transparency of the Fe2O3/SiO2 nano-composite films decreased with the content of the Fe2O3. Water and organic solvent in the films were evaporated with heat treatment, so the transparency of the films was enhanced under high temperature. It is also found that the saturation magnetization (M s) of the films increases with the temperature. As the content of the Fe2O3 increases, when the content of the Fe2O3 is around 30wt%, the M s of the films has a maximum value.  相似文献   

19.
Cu2ZnSnS4 (CZTS) thin films were successfully fabricated on glass substrates by sulfurizing Cu-Sn-Zn multilayer precursors, which were deposited by ion beam sputtering and RF magnetron sputtering, respectively. The structural, electrical and optical properties of the prepared films under various processing conditions were investigated in detail. Results showed that the as-deposited CZTS thin films with the precursors by both ion beam sputtering and RF magnetron sputtering have a composition near stoichiometric. The crystallization of the samples, however, has a strong dependence on the atomic percent of constituents of the prepared CZTS films. A single phase stannite-type structure CZTS with a large absorption coefficient of 104/cm in the visible range could be obtained after sulfurization at 520°C for 2 h. The samples relative to the RF magnetron sputtering showed a low resistivity of 0.073 Ωcm and band gap energy of about 1.53 eV. The samples relative to the ion beam sputtering exhibited a resistivity of 0.36 Ωcm and the band gap energy is about 1.51 eV. Supported by the National Natural Science Foundation of China (Grant No. 10574106), the Planned Science and Technology Project of Guangdong Province (Grant No.2003C05005) and the Natural Science Fund of Zhanjiang Normal University (Grant No.200801)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号