首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple and selective method was used for the preconcentration and determination of uranium(VI) by solid-phase extraction (SPE). In this method, a column of alumina modified with sodium dodecyl sulfate (SDS) and a new Schiff's base ligand was prepared for the preconcentration of trace uranyl(VI) from water samples. The uranium(VI) was completely eluted with HCl 2M and determined by a spectrophotometeric method with Arsenazo(III). The preconcentration steps were studied with regard to experimental parameters such as amount of extractant, type, volume and concentration of eluent, pH, flow rate of sample source and tolerance limit of diverse ions on the recovery of uranyl ion. A preconcentration factor more than 200 was achieved and the average recovery of uranyl(VI) was 99.5%. The relative standard deviation was 1.1% for 10 replicate determinations of uranyl(VI) ion in a solution with a concentration of 5 μg mL(-1). This method was successfully used for the determination of spiked uranium in natural water samples.  相似文献   

2.
A new ion imprinted polymer coated silica gel sorbent has been prepared using the radical "grafting from" polymerization method through surface-bound azo initiators for selective uranyl uptake. The introduction of azo initiator onto the silica surface was achieved by the reaction of surface amino groups with 4,4'-azobis(4-cyanopentanoic acid chloride). The grafting step was then carried out in a stirred solution of initiator-modified silica particles in the presence of uranyl ion and functional and cross-linking monomers. The prepared sorbent was characterized using FT-IR spectroscopy, scanning electron microscopy (SEM), elemental analysis (EA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and BET adsorption isotherm analysis. The influence of the uranyl concentration, pH, and flow rate of solution on the grafted polymer affinity has been investigated. Maximum uptake of uranyl ion was observed at a pH 3.0. The rebinding behavior of the sorbent has been successfully described by the Langmuir-Freundlich isotherm. The dynamic column capacity of sorbent and enrichment factor for uranyl ion were 52.9 +/- 3.4 micromol g(-1) and 52, respectively. It was found that imprinting results in increased affinity of the sorbent toward uranyl ion over strong competitor metal ions such as Fe(III) and Th(IV). The sorbent was repeatedly used and regenerated for 3 months without any significant decrease in polymer binding affinities. Finally the sorbent was applied to the preconcentration and determination of uranyl ion in real water samples.  相似文献   

3.
Single crystals of [UO2(OOC)2CH2(H2O)]·2H2O (I) were prepared by recrystallization of finely crystalline uranyl malonate trihydrate under hydrothermal conditions. The crystal structure of I consists of electroneutral [UO2(OOC)2CH2(H2O)]n layers and water molecules located between them. The uranium coordination number is 7. The uranium coordination polyhedron is a distorted pentagonal bipyramid with the oxygen atoms of the uranyl group in the apices. The equatorial plane is occupied by four O atoms of three malonate ligands and the water molecule. The malonate anion is coordinated in the bidentate fashion to one uranyl ion to form a six-membered ring and in the monodentate fashion to two other uranyl ions.  相似文献   

4.
掺杂聚苯胺导电膜的制备及对核设施表面铀的去污   总被引:3,自引:0,他引:3  
制备了掺杂导电聚苯胺可剥离膜,首次采用涂膜、电解联用去污方法,进行涂膜电解去除渗透到核设施金属材料内部形成氧化物的铀。在膜中,聚苯胺、盐酸、EDTA-2Na含量各为4%、0.5%~1%、1%;电解电压2.3V、电解时间25min~30min时,其去污率可达99%,优于其它的方法。  相似文献   

5.
本工作报道了一种含新型八核铀酰(U8)团簇单元([(UO2)8O43-OH)22-OH)2] 4+)的草酸铀酰配合物, 该化合物中, U型有机配体链可以增强铀酰之间的交联度, 具有稳定多核铀酰团簇的作用。通过与另外两种含单核和双核的铀酰配位化合物比较, 发现八核铀酰团簇单元的形成是一个pH调控的过程。理化性质分析显示, 荧光、红外、拉曼的信号峰都出现了不同程度的重叠和宽化, 表明八个铀酰离子具有较高的相似度, 这与此多核铀酰团簇的近平面分子构型密切相关。  相似文献   

6.
随着全球核能的开发利用, 铀已成为土壤、地表水和地下水的常见污染物, 从含铀废水中去除铀(VI)已成为迫切需要。本工作以氟化钙、焦磷酸钙、氢氧化钙为反应原料合成氟磷灰石, 系统研究了其对铀(VI)的去除性能并采用不同测试手段对吸附铀(VI)前后的氟磷灰石进行表征, 揭示了其相关去除机理。结果表明: 在温度为308 K, pH=3, 固液比为0.12 g/L, 平衡时间为120 min, 初始铀浓度为100 mg/L的条件下, 氟磷灰石对铀(VI)的吸附容量可达655.17 mg/g, 其吸附过程符合准二级动力学和Langmuir等温吸附模型, 且为自发和吸热过程。氟磷灰石对铀(VI)的去除机理为表面矿化, 吸附铀(VI)的氟磷灰石表面产生了新相准钙铀云母[Ca(UO2)2(PO4)2·6H2O], 准钙铀云母在pH≥3水溶液中能保持较高稳定性。因此, 氟磷灰石可以作为一种有前景的矿化剂, 用于含铀废水的净化和固体化处理。  相似文献   

7.
Results of an inter-laboratory round-robin study of the application of time-resolved emission spectroscopy (TRES) to the speciation of uranium(VI) in aqueous media are presented. The round-robin study involved 13 independent laboratories, using various instrumentation and data analysis methods. Samples were prepared based on appropriate speciation diagrams and, in general, were found to be chemically stable for at least six months. Four different types of aqueous uranyl solutions were studied: (1) acidic medium where UO2(2+)aq is the single emitting species, (2) uranyl in the presence of fluoride ions, (3) uranyl in the presence of sulfate ions, and (4) uranyl in aqueous solutions at different pH, promoting the formation of hydrolyzed species. Results between the laboratories are compared in terms of the number of decay components, luminescence lifetimes, and spectral band positions. The successes and limitations of TRES in uranyl analysis and speciation in aqueous solutions are discussed.  相似文献   

8.
Recovery of uranium with various sorbents from spent multicomponent solutions that are formed upon decontamination of beryllium items and contain uranium, beryllium, and aluminum complexes and sodium and fluoride ions was studied. Unsymmetrical phosphine oxide solid extractant (UPO-SE) showed better characteristics in the process than the ion exchangers studied (KU-2, SF-5, KB-4). Along with high performance, UPO-SE exhibits high selectivity in the presence of Be(II) ions. The main process parameters of uranium recovery, allowing calculation of the apparatus for the industrial sorption process with the possibility of multiple use of process solutions for decontamination, were determined.  相似文献   

9.
The enthalpies of solution of anhydrous and hydrated uranyl benzenesulfonate (I) and p-toluenesulfonate II) in 4 M HCl were determined. The standard enthalpies of formation of I and II and their crystal hydrates from uranium trioxide, sulfonic acids, and water and enthalpies of water addition to anhydrous salts and lower hydrates of II were calculated. The enthalpy of addition of water molecule to II·H2O is about half that of addition to II·3H2O. With regard to all approximations in calculations, the enthalpy of formation of II from amorphous uranium trioxide and aqueous solution of the corresponding acid is by approximately 20 kJ mol- 1 more negative as compared to I. It was concluded that the electron-donor power of the p-toluenesulfonate ion is noticeably greater than that of the benzenesulfonate ion, which determines the difference in the properties of II and I.  相似文献   

10.
A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Greentrade mark, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO(4)(-2)) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t(1/2) < or = 4 min), 1:10 for HD (t(1/2) < 2 min with molybdate), and 1:10 for GD (t(1/2) < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.  相似文献   

11.
Sorption of uranyl ions from 0.09 M aqueous KCl on aluminosilicate gels washed to remove intermicellar liquid was studied. The aluminosilicate gels are efficient sorbents with respect to uranyl ions, and their sorption power increases with decreasing acidity. Although uranyl cations form strong carbonate complexes, carbonate anions do not affect noticeably the uranyl sorption. Owing to strong sorption of uranyl ions on aluminosilicate gels, these materials can be used for building artificial geochemical barriers to prevent uranium penetration into underground water.  相似文献   

12.
Refining of uranyl nitrate solutions in centrifugal extractors to remove restricted impurities was studied. The maximum solvent loading with uranium in the steps of extraction, scrubbing, and stripping and the decontamination factors from the restricted impurities were determined. The optimum ratio of the flows of the aqueous and organic phases in scrubbing of the recycled solvent was found.  相似文献   

13.
The sorption of uranyl ions in mesoporous MCM-41 and MCM-48 was accomplished with the help of a direct-template-exchange route, and the progress was monitored as a function of pH of the precursor uranyl nitrate solution. Under identical conditions of synthesis, around one and a half times larger amount of uranium was found to be sorbed in MCM-48 (∼12.5 wt.%) as compared to MCM-41 (∼9.5 wt.%). Further, the powder X-ray diffraction (XRD) data revealed that the expansion of unit cell parameters and broadening of reflections of the uranium containing samples depended on the pH of the precursor uranyl solution. Likewise, the Fourier transform infrared spectroscopy (FT-IR) studies showed a progressive decrease in the frequency of the axial OUO asymmetric stretching vibrational band, νa(UO) of the anchored uranyl groups with the increase of pH of the exchanging uranyl solution. The presence of two bands at ∼920 and 879 cm−1 for uranyl exchanged samples prepared at pH > 5 indicated the presence of trinuclear (UO2)3+5(OH) species. The occlusion of uranium thus depends upon the pore structure of the host material and the nature and dimension of the hydrolysis species formed at a particular pH of uranyl solution. Furthermore, the template-exchange of hexavalent uranium in MCM-41 and MCM-48 not only results in the formation of bulky hydrolysis species in the mesovoids, but also substitutes (isomorphously) in the silicate matrix resulting in the formation of UMCM-41 and UMCM-48.  相似文献   

14.
Our laboratory has previously reported an antibody-based assay for hexavalent uranium (UO(2)(2+)) that could be used on-site to rapidly assess uranium contamination in environmental water samples (Melton, S. J.; et al. Environ. Sci. Technol. 2009, 43, 6703-6709). To extend the utility of this assay to less-characterized sites of uranium contamination, we required a uranium-specific adsorbent that would rapidly remove the uranium from groundwater samples, while leaving the concentrations of other ions in the groundwater relatively unaltered. This study describes the development of hydrogel particles containing amidoxime groups that can rapidly and selectively facilitate the uptake of uranyl ions. A miniemulsion polymerization technique using SDS micelles was employed for the preparation of the hydrogel as linked submicrometer particles. In polymerization, acrylonitrile was used as the initial monomer, ethylene glycol dimethacrylate as the crosslinker and 2-hydroxymethacrylate, 1-vinyl-2-pyrrolidone, acrylic acid, or methacrylic acid were added as co-monomers after the initial seed polymerization of acrylonitrle. The particles were characterized by transmission electron spectroscopy, scanning electron microscopy (SEM) and cryo-SEM. The amidoximated particles were superior to a commercially available resin in their ability to rapidly remove dissolved UO(2)(2+) from spiked groundwater samples.  相似文献   

15.
Decomposition of aqueous solutions of uranyl nitrate in a matrix of granulated silica gel of KSKG grade under the action of microwave radiation (MWR) was studied. Microwave irradiation leads not only to formation of solid decomposition products UO3, UO2(OH)NO3, and their hydrates in pores of KSKG granules, but also to accumulation of gaseous NO x and H2O. The presence of NO x in KSKG pores leads to HNO3 formation in the course of washing of sorbent granules with water. This prevents hydrolysis of uranyl nitrate and formation of UO2(OH)2·H2O in KSKG pores. Washout of uranium with water and HClO4 solutions from the KSKG fraction containing products of decomposition of 2 and 10 g of the initial UO2(NO3)2·6H2O under the action of MWR (hereinafter denoted as KSKG-P-I) was studied. Upon ∼7-day contact of the solid and liquid phases at the total ratio S : L = 1 : 20, from 5 to 14% of U passes into the aqueous phase from KSKG-P-I samples obtained in experiments with 10 and 2 g of UO2(NO3)2·6H2O, respectively. In the course of repeated treatments of KSKG-P-I with water, pH of the wash water increased from 3 to 6, owing to removal of NO x from KSKG pores. Then an insoluble phase of uranyl hydroxide UO2(OH)2·H2O, which can also be presented as hydroxylated uranium trioxide UO3·2H2O, is gradually formed from the solution obtained by treatment of KSKG-P-I with water. On treatment of KSKG-P-I with HClO4 solutions (pH 1–2), virtually all uranium species formed by MWR treatment of aqueous uranyl nitrate solutions in KSKG matrix dissolve (at a contact time of the solid and liquid phases of ∼21 days, the amount of U that passed into HClO4 solutions is ∼90%). The amount of the U form that is not extracted with HClO4 solutions and remains in KSKG granules is ∼12% of its initial amount. X-ray phase analysis suggests that the uranium species remaining in KSKG are silicate compounds formed by sorbent saturation with a uranyl nitrate solution and subsequent MWR treatment.  相似文献   

16.
A new chelating polymeric extraction chromatographic resin was prepared by chemical anchoring of N,N'-dimethyl-N,N'-dibutyl malonamide (DMDBMA) with chloromethylated Merrifield resin((R)). The grafted resin exhibited stronger binding for hexavalent and tetravalent actinides such as U(VI), Th(IV) and Pu(IV) over trivalent actinides, viz. Am(III) and Pu(III). Batch studies on solid phase extraction performed over a wide range of acid solution (0.01-6M HNO(3)) revealed that ternary mixer of uranium, americium and plutonium or thorium, americium and plutonium could be separated from each other at 1M HNO(3). Desorption of U(VI), Pu(IV) and Am(III) from the loaded resin was efficiently carried out using 0.1M alpha-HIBA, 0.25M oxalic acid and 0.01M EDTA, respectively. Quantitative pre-concentration of actinide ions such as Th(IV) and U(VI) was possible from 3M HNO(3) solution. The practical utility of the grafted resin was evaluated by uranium sorption measurements in several successive cycles. The sorption efficiency of the resin with respect to uranyl ion remained unchanged even after 30 days of continuous use. The surface morphology of the resin was monitored with the help of scanning electron microscopy (SEM) technique.  相似文献   

17.
Three materials that are designed to treat uranium-contaminated water were investigated. These are a cation exchange resin, IRN 77; an anion exchange resin, Varion AP; and a recently developed material called PANSIL (quartz sand coated with 2% amidoxime resin by weight). The reaction rate, capacity, and effective pH range of the three materials are reported. The capacity and conditional distribution coefficient in neutral, uranyl-contaminated synthetic groundwater containing carbonate are also reported. The suitability of each material for treating uranium-contaminated groundwater using a permeable reactive barrier (PRB) approach is then discussed. All three materials react rapidly in the pH range 5-7, reaching equilibrium in less than 4h at approximately 23 degrees C. The unconditioned cation exchange resin removed 8 g UO2 2+ per kg of resin from neutral synthetic groundwater containing 30 mg/l of UO2 2+, but a lower capacity is anticipated in groundwater with either higher ionic strength or lower UO2 2 concentrations. It operates by first acidifying the solution, then sorbing UO2 2, and can release UO2 2 when its buffering capacity has been exhausted. The anion exchange resin is very effective at removing anionic uranyl carbonate species from solutions with a pH above 5, with good specificity. Up to 50 g/kg of uranium is removed from contaminated groundwater at neutral pH. PANSIL is effective at sequestering cationic and neutral uranyl species from solutions in the pH range 4.5-7.5, with very good specificity. The capacity of PANSIL is pH-dependent, increasing from about 0.4 g/kg at pH 4.5, to about 1 g/kg at pH 6, and 1.5 g/kg around pH 7.5. In neutral groundwater containing carbonate, both the anion exchange resin and PANSIL exhibit conditional distribution coefficients exceeding 1470 ml/g, which is about an order of magnitude higher than comparable reactive barrier materials reported in the literature.  相似文献   

18.
Samples of the secondary uranium minerals collected in the abandoned uranium mine at Pecs (Hungary) were investigated by two micro-techniques: scanning electron microscopy (SEM/EDX) and micro-Raman spectroscopy (MRS). They were applied to locate U-rich particles and identify the chemical form and oxidation state of the uranium compounds. The most abundant mineral was a K and/or Na uranyl sulphate (zippeite group). U(VI) was also present in the form showing intensive Raman scattering at 860 cm−1 which can be attributed to uranium trioxide. This research has shown the successful application of micro-Raman spectroscopy for the identification of uranyl mineral species on the level of individual particles.  相似文献   

19.
Uranium-containing samples of magnesium potassium phosphate (MPP) compound were synthesized using a nitric acid uranium solution. Uranium is incorporated in the MPP compound in the form of potassium uranyl phosphate with the structure of metaankoleite natural mineral, K(UO2)PO4·3H2O. The differential and integral uranium leach rates, determined in accordance with GOST (State Standard) R 52 126–2003 on the 28th day of contact of the compound with water, are 1.7 × 10–6 and 2.7 × 10–6 g cm–2 day–1, respectively, and the degree of leaching is 0.014%. High hydrolytic durability of the compound with respect to uranium leaching reduces the risk of release of uranium isotopes from radioactive waste into the environment.  相似文献   

20.
制备出酸度- 13. 20 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号