首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interference-based channel assignment for DS-CDMA cellular systems   总被引:8,自引:0,他引:8  
Link capacity is defined as the number of channels available in a link. In direct-sequence code-division multiple-access (DS-CDMA) cellular systems, this is limited by the interference present in the link. The interference is affected by many environmental factors, and, thus, the link capacity of the systems varies with the environment. Due to the varying link capacity, static channel assignment (SCA) based on fixed link capacity is not fully using the link capacity. This paper proposes a more efficient channel assignment based on the interference received at the base station (BS). In the proposed algorithm, a channel is assigned if the corresponding interference margin is less than the allowed interference, and, thus, channels are assigned adaptively to dynamically varying link capacity. Using the proposed algorithm yields more channels than using SCA in such an environment changes with nonhomogeneous traffic load or varying radio path loss. The algorithm also improves service grade by reserving channels for handoff calls  相似文献   

2.
Interference has strong effect on the available bandwidth of wireless local area network (WLAN) based mesh networks. The channel assignment problem for multi-radio multi-channel multihop WLAN mesh networks is complex NP-hard, and channel assignment, routing and power control are tightly coupled. To mitigate the co-channel interference and improve capacity in multi-channel and multi-interface WLAN mesh networks, a power-efficient spatial reusable channel assignment scheme is proposed, which considers both channel diversity and spatial reusability to reduce co-channel interference by joint adjusting channel, transmission power and routing. In order to assign channel appropriately, an efficient power control scheme and a simple heuristic algorithm is introduced to achieve this objective, which adjust the channel and power level of each radio according to the current channel conditions so as to increase the opportunity of channel spatial reusability. The proposed channel assignment scheme also takes load, capacity and interference of links into consideration. Simulation results show the effectiveness of our approach and demonstrate that the proposed scheme can get better performance than other approaches in terms of throughput, blocking ratio, energy consumption and end-to-end delay.  相似文献   

3.
Multicast can enhance the performance of wireless mesh networks (WMNs) effectively, which has attracted great attentions in recent years. However, multicast communication in WMNs requires efficient channel assignment strategy to reduce the total network interference and maximize the network throughput. In this paper, the concept of local multicast is proposed to measure interference and solve hidden channel problem in multicast communication. Basing on the concept, we propose a channel assignment algorithm considering the interference of local multicast and forwarding weight of each node (LMFW). The algorithm fully considers partially overlapped channels and orthogonal channels to improve the network performance. Simulations show that the proposed algorithm can reduce interference and improve network capacity of WMNs.  相似文献   

4.
在对认知无线电网络进行信道分配时,网络的拓扑健壮性、对主用户的干扰和认知用户之间的干扰是衡量网络性能优劣的重要指标。文中在假设信道占用时间服从负指数分布的前提下,提出了一个权衡对主用户干扰和认知用户之间干扰的参数,并结合健壮的拓扑控制算法,给出了一种改进的拓扑控制算法。仿真结果表明,ITCA比CRTCA在网络吞吐量上有所增加,冲突率有所降低。  相似文献   

5.
该文根据无线Mesh网络流量呈现树状拓扑汇聚的特点提出基于拓扑分割的信道分配策略。依据无线干扰对不同链路的影响程度,把无线干扰分类为有确定方向的纵向干扰和横向干扰;提出沿着纵向干扰方向逐跳分割网络拓扑算法;提出最少信道隔离纵向干扰和为吞吐量最小的子拓扑增加信道的子拓扑间信道分配策略;提出横向干扰分块的子拓扑内信道使用方法;理论分析子拓扑内的冲突域及网络性能瓶颈,仿真研究子拓扑的吞吐性能及信道分配顺序。仿真结果表明,隔离纵向干扰和增加信道的分配策略能够有效保证和提升网络吞吐量,横向干扰分块的方法优于802.11s中定义的公共信道框架多信道机制。  相似文献   

6.
In multi‐radio multi‐channel wireless mesh networks, the design of logical topology is different from that in single channel wireless mesh networks. The same channel assignment algorithm used for various logical topologies will lead to diverse network performance. In this paper, we study the relationship between k ‐connected logical topology and the maximum number of assigned channels. Meanwhile, we analyze the issues affecting channel assignment performance, and present the lower and upper bounds of the maximum allowable number of assigned channels for k ‐connected logical topology. We then develop a k ‐connected logical topology design algorithm based on shortest disjoint paths and minimum interference disjoint paths for each node‐pair. In addition, we propose a static channel assignment algorithm according to minimum spanning tree search. Extensive simulations show that our proposed algorithm achieves higher throughput and lower end‐to‐end delay than fault tolerant topology control algorithms, which validates the involved trade‐off between path length and nodal interference. Moreover, numerical results demonstrate that our proposed channel assignment further improves network performance under the context of limited radio interfaces. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
程江  朱世华  党安红 《电子学报》2001,29(10):1405-1408
本文提出了一种基于反向链路载干比的信道分配优化模型.这种模型较原有的兼容矩阵模型更接近实际系统,并且能够应用于分析干扰自适应信道分配方案.本文在提出这种模型的同时,对比了该模型和原有模型在描述信道分配问题的精度和能力上的优劣.此外,本文还提出了使用改进遗传算法求解该模型下信道分配问题的方法.分析和实验均说明本文提出的模型对实际环境进行了更精确的描述,通过使用这种模型求解信道分配问题能够更好利用信道资源.  相似文献   

8.
Wireless sensor networks are suffering from serious frequency interference. In this paper, we propose a channel assignment algorithm based on graph theory in wireless sensor networks. We first model the conflict infection graph for channel assignment with the goal of global optimization minimizing the total interferences in wireless sensor networks. The channel assignment problem is equivalent to the generalized graph coloring problem which is a NP complete problem. We further present a meta heuristic Wireless Sensor Network Parallel Tabu Search (WSN PTS) algorithm, which can optimize global networks with small numbers of iterations. The results from a simulation experiment reveal that the novel algorithm can effectively solve the channel assignment problem.  相似文献   

9.
该文针对多信道无线mesh网络,采用基于效用最优的定价机制,提出了一种功率-干扰价格模型,并基于该模型提出了一种分布式联合信道分配和功率分配算法。每个节点根据自己所消耗功率状况合理地定功率价格,并根据自己所受干扰状况合理地定干扰价格。通过功率价格和干扰价格来调节链路的信道分配和功率分配,使网络效用最大化。仿真结果表明:所提出的算法能够快速、平稳地收敛到近似最优解。同时还仿真了网络可用信道数目、节点射频数目和功率对系统性能的影响,可以为网络配置提供参考。  相似文献   

10.
A new algorithm for frequency channel assignment in mobile radio communication is proposed. The algorithm uses flexible fixed channel assignment which enables the calls having all their nominal channels busy to borrow channels from the neighboring cells provided that co-channel interference will not result. The borrowed channel cannot be used in three interfering cells; therefore reassignment strategy is used when a call is terminated on a nominal channel to switch a call in progress in a borrowed channel to that nominal one and set free the borrowed channel in the three interfering cells. Thus the traffic carried on borrowed channels is minimized. Also different call switching strategies are proposed to give priority to some channels to be used by the nominal cells and other channels to be borrowed by neighboring cells. These strategies considerably reduce the blocking probability. A simulation study of the algorithm was carried out on 49 hexagonal zones having uniform traffic density. Also a combined telephone and dispatch traffic was included in the simulation study. The results showed that the new algorithm is better than the other channel assignment schemes. This can be applied in high capacity mobile communications systems to utilize the spectrum efficiently.  相似文献   

11.
This paper presents an efficient heuristic algorithm for the channel assignment problem in cellular radio networks. The task is to find channel assignment with minimum frequency bandwidth necessary to satisfy given demands from different nodes in a cellular network. At the same time the interference among calls within the same cell and from different neighboring cells are to be avoided, where interference is specified as the minimum frequency distance to be maintained between channels assigned to a pair of nodes. The simplest version of this problem, where only cochannel interferences are considered, is NP-complete. The proposed algorithm could generate a population of random valid solutions of the problem very fast. The best among them is the optimum or very near to optimum solution. For all problems with known optimal solutions, the algorithm could find them. A statistical estimation of the performance of the proposed algorithm is done. Comparison with other methods show that our algorithm works better than the algorithms that we have investigated  相似文献   

12.
We propose a channel assignment scheme with access control for obtaining better system performance within the common packet channel (CPCH) access procedure of wideband code-division multiple-access (WCDMA) systems. The proposed scheme is analyzed taking multiple access interference into consideration and is compared with other schemes in the 3rd Generation Partnership Project (3GPP): the basic scheme, the channel monitoring scheme, and the channel assignment scheme without access control. The results show that the proposed scheme provides high throughput, even under high-loading conditions, since the access control algorithm based on channel load prohibits excessive interference  相似文献   

13.
IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas. In this paper, we discuss interference models and address how they can affect the design of channel assignment in rural mesh networks. We present a new channel assignment framework based on graph coloring for rural wireless mesh networks. The goal of the framework is to allow synchronously transmitting or receiving data from multiple neighbor links at the same time, and continuously doing full-duplex data transfer on every link, creating an efficient rural mesh network without interference. Channel assignment is shown to be NP-hard. We frame this channel allocation problem in terms of Adjacent Vertex Distinguishing Edge Coloring (AVDEC). Detailed assignment results on grid topology are presented and discussed. Furthermore, we design an algorithm. Finally, we evaluate the perform- ance of the proposed algorithm through extensive simulations and show the algorithm is effective to the regular grid topologies, and the number of colors used by the algorithm is upper bounded by A ~ 1. Hence the algorithm guarantees that the number of channels available in standards such as IEEE 802.11a is sufficient to have a valid AVDEC for many grid topologies. We also evaluate the proposed algorithm for arbitrary graphs. The algorithm provides a lower upper bound on the minimum number of channels to the AVDEC index channel assignment problem.  相似文献   

14.
The fundamental issues in mobile cognitive radio ad‐hoc networks are the selection of the optimal stable paths between nodes and proper assignment of the frequency channels/time slots (communication segments) to the links. In this paper, a joint load balanced stable routing and communication segment assignment algorithm is proposed that considers jointly the mobility prediction, mitigating the co‐channel interference and energy consumption. The novelty of the proposed algorithm lies in the increasing of the path stability, which benefits from the maximum link lifetime parameter and introduced weighting function to keep routes away from the PU's region. This avoids the negative impacts on the PUs' operations and decreases the conflict of the cognitive nodes. In the proposed algorithm, the concept of load balancing is considered that yields in the balancing energy consumption in the network, improving the network performance and distributing traffic loads on all available channels. The effectiveness of the proposed algorithm is verified by evaluating the aggregate interference energy, average end‐to‐end delay, goodput, and the energy usage per packet under 6 scenarios. The results show that the performance of the proposed algorithm is significantly better than the recently proposed joint stable routing and channel assignment protocol.  相似文献   

15.
The diverse environments emerging for wireless communication applications could render the centralized prediction-based channel assignment methodology, conventionally employed in cellular radio networks, impractical. The distributed measurement-based approach seems to be a more practical solution. We evaluate and compare several distributed measurement-based algorithms for dynamic channel assignment (DCA). Their performance is also compared with a centralized prediction-based algorithm. It is found that a simple aggressive algorithm with the use of a threshold, known as the least interference algorithm (LIA), performs the best  相似文献   

16.
Multihop infrastructure wireless mesh networks offer increased reliability, coverage, and reduced equipment costs over their single-hop counterpart, wireless local area networks. Equipping wireless routers with multiple radios further improves the capacity by transmitting over multiple radios simultaneously using orthogonal channels. Efficient channel assignment and routing is essential for throughput optimization of mesh clients. Efficient channel assignment schemes can greatly relieve the interference effect of close-by transmissions; effective routing schemes can alleviate potential congestion on any gateways to the Internet, thereby improving per-client throughput. Unlike previous heuristic approaches, we mathematically formulate the joint channel assignment and routing problem, taking into account the interference constraints, the number of channels in the network, and the number of radios available at each mesh router. We then use this formulation to develop a solution for our problem that optimizes the overall network throughput subject to fairness constraints on allocation of scarce wireless capacity among mobile clients. We show that the performance of our algorithms is within a constant factor of that of any optimal algorithm for the joint channel assignment and routing problem. Our evaluation demonstrates that our algorithm can effectively exploit the increased number of channels and radios, and it performs much better than the theoretical worst case bounds  相似文献   

17.
In this paper, we present a routing and interface assignment algorithm for multi-channel multi-interface (MCMI) wireless ad hoc networks. An MCMI network consists of nodes that have more than one interface, and more than one channel available for transmission. The proposed algorithm takes into account both the number of hops between the source to the destination nodes, and the effects of adjacent hop interference. The algorithm has two decoupled steps: route selection and interface assignment. The step of route selection finds the path that has the minimum lower bound among all possible routes between the source and the destination while the step of interface assignment assigns an interface to a channel on each hop on that path. The interface assignment is based on the use of the Viterbi algorithm. The use of decoupled steps makes the algorithm computationally efficient, while the use of the lower bound metrics in route selection and the Viterbi algorithm in interface assignment helps improving the global optimality of the routing. Computer simulation and examples are used to demonstrate the effectiveness and performance of the proposed technique. Comparisons are made to other existing routing techniques in the area of dynamical spectrum access.  相似文献   

18.
Transmitter power control is an effective technique to reduce co-channel interference and increase system capacity for cellular radio networks. Dynamic channel assignment can also be used to improve spectrum efficiency and thus increases the system capacity. This paper investigates channel assignment algorithms which combine dynamic channel assignment with signal-to-interference ratio balanced power control and proposes a new algorithm. Simulation results show that this new scheme can greatly reduce the channel reassignment rate and still maintain satisfactory performance. It may thus be used as an effective channel assignment scheme in cellular mobile systems. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
一种新的基于最大流的无线Mesh网络信道分配算法   总被引:1,自引:0,他引:1  
在无线Mesh网络中,为节点配置多接口多信道MAC协议成为提高网络性能、扩大网络容量的有效手段之一。有效的信道分配策略在多信道无线Mesh网络中显得尤为重要。本文提出一种基于最大流的信道分配算法。该算法通过最大流计算网络中可达到的最大吞吐量,以此作为网络负载标准进行信道分配,将降低整个网络的总体干扰作为目标函数进行优化。仿真结果表明,即使在网络负载较重的情况下,算法仍能保持较好的性能。  相似文献   

20.
针对无线Mesh网络因受部署在本地的其他网络干扰而导致的传输能力下降的问题,设计了一种基于干扰感知的多接口动态信道分配算法予以克服。同时采用链接重建的方法避免传输中的数据流因信道改变而被破坏的问题。通过实验仿真,证明在复杂电磁环境下,该算法能有效降低网络干扰,保证网络服务质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号