共查询到20条相似文献,搜索用时 62 毫秒
1.
近年来,图神经网络模型因其对非欧氏数据的建模和对全局依赖关系的捕获能力而广泛应用于文本分类任务。现有的基于图卷积网络的分类模型中的构图方法存在消耗内存过大、难以适应新文本等问题。此外,现有研究中用于描述图节点间的全局依赖关系的方法并不完全适用于分类任务。为解决上述问题,该文设计并提出了基于概率分布的文本分类网络模型,以语料库中的词和标签为节点构建标签-词异构关系图,利用词语在各标签上的概率分布描述节点间的全局依赖关系,并通过图卷积操作进行文本表示学习。在5个公开的文本分类数据集上的实验表明,该文提出的模型在有效缩减图尺寸的同时,相比于其他文本分类网络模型取得了较为先进的结果。 相似文献
2.
现有基于图卷积网络的文本分类模型通常只是通过邻接矩阵简单地融合不同阶的邻域信息来更新节点表示,导致节点的词义信息表达不够充分。此外,基于常规注意力机制的模型只是对单词向量进行正向加权表示,忽略了产生消极作用的单词对最终分类的影响。为了解决上述问题,文中提出了一种基于双向注意力机制和门控图卷积网络的模型。该模型首先利用门控图卷积网络有选择地融合图中节点的多阶邻域信息,保留了之前阶的信息,以此丰富节点的特征表示;其次通过双向注意力机制学习不同单词对分类结果的影响,在给予对分类起积极作用的单词正向权重的同时,对产生消极作用的单词给予负向权重以削弱其在向量表示中的影响,从而提升模型对文档中不同性质节点的甄别能力;最后通过最大池化和平均池化融合单词的向量表示,得到文档表示用于最终分类。在4个基准数据集上进行了实验,结果表明,该方法明显优于基线模型。 相似文献
3.
文本分类任务是自然语言处理领域内一个重要的研究问题.近年来,因处理复杂网络结构的出色能力,图神经网络模型(Graph Neural Network,GNN)受到广泛关注并被引入到文本分类任务中.在之前的研究中,基于图卷积网络(Graph Convolu-tional Neural Network,GCN)的分类模型使用... 相似文献
4.
5.
针对图嵌入式文本分类方法在预测性能和归纳能力方面的缺陷,在文本图卷积网络(TextGCN)的基础上,进行适当改进。结合预测文本嵌入(PTE)的高效训练和归纳性,在各个网络层中使用不同的图;通过异质图卷积网络架构来学习特征嵌入,利用习得的特征进行归纳推理。实验结果表明,在大量训练样本标注的情况下,所提方法取得了与其它方法相当或稍优的性能。在少量训练样本标注的情况下,所提方法表现更优,性能增益范围为2%~7%,支持更快的训练和泛化性。 相似文献
6.
7.
近年来基于卷积神经网络(CNN)的图像分割应用已十分广泛, 在特征提取的部分取得了很大进展. 然而随着卷积层数越来越深, 感受野不断增大, 使模型丢失局部特征信息进而影响模型性能. 使用图卷积网络(GCN)处理图数据结构的信息, 能够在保留局部特征同时不随层数的加深而丢失局部信息. 本文主要研究将基于CNN结构的对称全卷积网络(U-Net)特征提取与基于GCN的图像分割结合, 提取全局与局部、浅层与深层的多尺度特征集应用于多模态脑胶质瘤核核磁共振(MR)序列图像分割, 可分为两个阶段: 第1阶段利用 U-Net 对多模态脑核磁共振胶质瘤MR序列图像进行特征提取, 通过多个池化层实现多尺度特征提取及上采样进行特征融合, 其中底层输出较低级别特征, 高层输出更加抽象的高级特征; 第2阶段通过膨胀邻域及稀疏化处理将 U-Net 获得的特征图数据转化为 GCN 所需的图结构数据, 将图像分割问题转化为图节点分类问题, 最后通过余弦相似度量对图结构数据进行分类. 在BraTS 2018公开数据库上的实验结果取得分割准确度0.996、灵敏度0.892的效果. 相比其他深度学习模型, 本方法通过多尺度特征融合, 利用GCN建立高低级别特征的拓扑连接, 确保局部信息不丢失以取得较好的分割效果, 能够胜任临床脑胶质瘤核磁共振图像的分析需求, 进而有效提高脑胶质瘤诊断精度. 相似文献
8.
软件漏洞是导致网络安全事故的一项重要因素。针对现有静态代码分析工具存在较高的误报率与漏报率问题,提出了一种基于残差门控图卷积网络的自动化漏洞检测方法。首先将源代码转换成包含语义、语法特征信息的代码图数据,然后使用残差门控图卷积神经网络对图结构数据进行表示学习,最后训练神经网络模型来预测代码漏洞,实现了C/C++函数代码自动漏洞检测。该方法采用VDISC数据集来验证有效性,检测结果的F1值(CWE-119漏洞类型)达到了76.60%,并与基线方法相比,F1值分别提高了9.46个百分点、7.24个百分点、5.67个百分点、8.42个百分点,所提方法有效提高了漏洞检测能力,证明了该方法的有效性。 相似文献
9.
多标签学习广泛应用于文本分类、标签推荐、主题标注等.最近,基于深度学习技术的多标签学习受到广泛关注,针对如何在多标签学习中有效挖掘并利用高阶标签关系的问题,提出一种基于图卷积网络探究标签高阶关系的模型TMLLGCN.该模型采用GCN的映射函数从数据驱动的标签表示中生成对象分类器挖掘标签高阶关系.首先,采用深度学习方法提... 相似文献
10.
文本分类是自然语言处理中一个基本而又重要的任务,近年来,图神经网络被越来越多地应用于文本分类中。然而,使用图神经网络的图表示学习在涉及文本分类的任务中不能很好地满足新词的归纳学习,其一般假设训练和测试数据来自相同的分布,但现实中这个假设经常不成立。为了克服这些问题,文中提出了Invariant-GCN,用于通过GCN进行归纳文本分类。首先为每个文档构建单个图,使用GCN根据其局部结构学习细粒度的单词表示,这可以有效地为新文档中没见过的单词生成嵌入进而将单词节点作为文档嵌入合并;然后提取最大限度地保留不变类内信息的期望子图,使用这些子图进行学习不受分布变化的影响;最后通过图分类方法完成文本分类。在4个基准数据集上与5种分类方法进行了比较,实验结果表明Invariant-GCN具有良好的文本分类效果。 相似文献
11.
12.
文本风格迁移一直是自然语言处理(NLP)中的一个研究热点,近年来,随着文本生成方法的发展,越来越多的工作着眼于不成对(non-parallel)文本风格迁移这一任务.这一任务的目标是,利用不包含一一对应句子的两个或多个不同风格的文本集,学习一个迁移模型,实现改变句子的风格的同时保留句子其他的内容.目前针对该任务,已有一些基于生成对抗网络的迁移算法被提出,但是受限于对抗学习本身的训练不稳定,以及对句子的风格和语义的独立性假设本身不合理,这些方法无法高效的学到迁移效果好的模型.在这篇文章中,我们首次从统计学习的角度给出了文本风格的定义—文本集中语义向量的协方差矩阵,在这种新的观点下,文本的风格依赖于所有句子的语义向量.我们随后提出了一种无学习(learning free)迁移方法,我们只需要预训练一个自编码器来得到句子的语义向量,然后对这些向量进行白化和风格化变换,来实现风格迁移. 相似文献
13.
在中文信息处理中,分词是一个十分常见且关键的任务。很多中文自然语言处理的任务都需要先进行分词,再根据分割后的单词完成后续任务。近来,越来越多的中文分词采用机器学习和深度学习方法。然而,大多数模型都不同程度的有模型过于复杂、过于依赖人工处理特征、对未登录词表现欠佳等缺陷。提出一种基于卷积神经网络(Convolutional Neural Networks,CNN)的中文分词模型——PCNN(Pure CNN)模型,该模型使用基于字向量上下文窗口的方式对字进行标签分类,具有结构简单、不依赖人工处理、稳定性好、准确率高等优点。考虑到分布式字向量本身的特性,在PCNN模型中不需要卷积的池化(Pooling)操作,卷积层提取的数据特征得到保留,模型训练速度获得较大提升。实验结果表明,在公开的数据集上,模型的准确率达到当前主流神经网络模型的表现水准,同时在对比实验中也验证了无池化层(Pooling Layer)的网络模型要优于有池化层的网络模型。 相似文献
14.
针对中文数据的特殊性导致判别时容易产生噪声信息,使用传统卷积神经网络(CNN)无法深度挖掘情感特征信息等问题,提出了一种结合情感词典的双输入通道门控卷积神经网络(DC-GCNN-SL)模型。首先,使用情感词典的词语情感分数对句子中的词语进行标记,从而使网络获取情感先验知识,并在训练过程中有效地去除了输入句子的噪声信息;然后,在捕获句子深度情感特征时,提出了基于GTRU的门控机制,并通过两个输入通道的文本卷积运算实现两种特征的融合,控制信息传递,有效地得到了更丰富的隐藏信息;最后,通过softmax函数输出文本情感极性。在酒店评论数据集、外卖评论数据集和商品评论数据集上进行了实验。实验结果表明,与文本情感分析的其他模型相比,所提模型具有更好的准确率、精确率、召回率和F1值,能够有效地获取句子的情感特征。 相似文献
15.
针对Word2Vec、GloVe等词嵌入技术对多义词只能产生单一语义向量的问题,提出一种融合基于语言模型的词嵌入(ELMo)和多尺度卷积神经网络(MSCNN)的情感分析模型。首先,该模型利用ELMo学习预训练语料,生成上下文相关的词向量;相较于传统词嵌入技术,ELMo利用双向长短程记忆(LSTM)网络融合词语本身特征和词语上下文特征,能够精确表示多义词的多个不同语义;此外,该模型使用预训练的中文字符向量初始化ELMo的嵌入层,相对于随机初始化,该方法可加快模型的训练速度,提高训练精度;然后,该模型利用多尺度卷积神经网络,对词向量的特征进行二次抽取,并进行特征融合,生成句子的整体语义表示;最后,经过softmax激励函数实现文本情感倾向的分类。实验在公开的酒店评论和NLPCC2014 task2两个数据集上进行,实验结果表明,在酒店评论数据集上与基于注意力的双向LSTM模型相比,该模型正确率提升了1.08个百分点,在NLPCC2014 task2数据集上与LSTM和卷积神经网络(CNN)的混合模型相比,该模型正确率提升了2.16个百分点,证明了所提方法的有效性。 相似文献
16.
深度学习方法被广泛应用于轴承故障诊断,但在实际工程应用中,轴承服役期间的真实服役故障数据不易收集,缺乏数据标签,难以进行充分的训练。针对轴承服役故障诊断困难的问题,提出了一种基于图卷积网络(GCN)的迁移学习轴承服役故障诊断模型。该模型从数据充足的人工模拟损伤故障数据中学习故障知识,并迁移到真实的服役故障上,以提高服役故障的诊断准确率。具体来说,通过将人工模拟损伤故障数据和服役故障数据的原始振动信号由小波变换转换为同时具有时间和频率信息的时频图,并将得到的时频图输入到图卷积层中进行学习,从而有效地提取源域和目标域的故障特征表示;然后计算源域和目标域的数据分布之间的Wasserstein距离来度量两个数据分布之间的差异,通过最小化数据分布差异,构建了一个能诊断轴承服役故障的故障诊断模型。在不同的轴承故障数据集和不同工作条件下设计了多种不同的任务进行实验,实验结果表明,该模型具有诊断轴承服役故障的能力,同时也能从一个工作条件迁移到另一工作条件,在不同组件类型和不同工作条件之间进行故障诊断。 相似文献
17.
协同过滤是一种应用广泛的推荐算法,其核心过程是学习用户和商品的向量表示。基于图卷积网络(GCN)的协同过滤算法在向量嵌入过程中加入邻居节点的关联信息,进一步提升了算法的推荐性能。然而,图协同过滤算法中存在过平滑现象,且其仅采用邻接矩阵在局部结构中扩展,没有从图的整体结构出发挖掘节点间潜在的交互模式,使得交互信息来源单一。提出一种基于GCN的双通道协同过滤推荐算法DCCF。将向量嵌入过程划分为局部卷积通道和全局卷积通道,以获取不同类型的连接信息。在局部卷积通道中,直接定位邻域节点并使用单层网络结构完成计算,优化信息的聚合方式以应对过平滑问题。在全局卷积通道中,通过聚类的方式构造全局交互图并参与信息的聚合过程,从而挖掘节点间的潜在联系。将局部信息与全局信息相结合,以获得包含不同类型高阶关系的节点向量表示。在3个公开数据集上进行对比实验,结果表明,相较基准算法中性能表现最优的模型,DCCF在归一化折损累计增益和召回率这2个指标上最高分别提升2.8%和5.0%。 相似文献
18.
19.
文本情感分析已经逐渐成为自然语言处理(NLP)的重要内容,并在系统推荐、用户情感信息获取,为政府、企业提供舆情参考等领域越来越占据重要地位。通过文献调研的方式,对情感分析领域的方法进行对比和综述。首先,从时间、方法等维度对情感分析的方法进行文献调研;然后,对情感分析的主要方法、应用场景进行归纳总结和对比;最后,在此基础上分析每种方法的优缺点。根据分析结果可以知道,在面对不同的任务场景,主要有三种情感分析的方法:基于情感字典的情感分析法、基于机器学习的情感分析法和基于深度学习的情感分析法,基于多策略混合的方法成为改进的趋势。文献调研表明,文本情感分析的技术方法还有改进的空间,在电子商务、心理治疗、舆情监控方面有较大市场和发展前景。 相似文献
20.
图像描述模型需要提取出图像中的特征,然后通过自然语言处理(NLP)技术将特征用语句表达出来。现有的基于卷积神经网络(CNN)和循环神经网络(RNN)搭建的图像描述模型在提取图像关键信息时精度不高且训练速度缓慢。针对这个问题,提出了一种基于卷积注意力机制和长短期记忆(LSTM)网络的图像描述生成模型。采用Inception-ResNet-V2作为特征提取网络,在注意力机制中引入全卷积操作替代传统的全连接操作,减少了模型参数的数量。将图像特征与文本特征有效融合后送入LSTM单元中完成训练,最终产生描述图像内容的语义信息。模型采用MSCOCO数据集进行训练,使用多种评价指标(BLEU-1、BLEU-4、METEOR、CIDEr等)对模型进行验证。实验结果表明,提出的模型能够对图像内容进行准确描述,在多种评价指标上均优于基于传统注意力机制的方法。 相似文献