首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为明确波形钢板剪力墙不发生屈曲的界限条件并分析开洞对其承载力及耗能能力的影响,基于波形钢板剪切屈曲理论推导其屈曲应力计算式,并采用数值分析及变形等级划分方法得到约束刚度比取值范围,由此提出波形钢板剪力墙不发生屈曲的界限条件为屈曲应力大于剪切屈服应力且约束刚度比大于3。通过对比开洞模型的变形等级计算参数,验证界限条件对开洞波形钢板墙的适用性,建立有限元模型研究钢板墙高宽比、钢板厚度、开洞率、洞口高宽比及洞口位置对波形钢板墙承载力及耗能能力的影响。结果表明:钢板高宽比越小、板厚越大,开洞对其承载力及耗能能力的削弱程度越大,洞口高宽比在0.33~0.5之间时开洞波形钢板墙的承载力及耗能最大,中心开洞时的最小。基于波形钢板剪力墙全截面剪切屈服的受力机理对其受剪承载力和塑性耗能计算式进行推导,并通过拟合得到考虑洞口参数影响的开洞波形钢板剪力墙受剪承载力及耗能折减系数计算式;通过9组不开洞模型和30组不同洞口尺寸及位置的开洞模型对计算式的有效性进行验证。结果表明计算值与模拟值的误差均在15%以内,适用于满足无屈曲界限条件的开洞波形钢板剪力墙。  相似文献   

2.
《工业建筑》2017,(9):120-128
采用ABAQUS软件对中部开洞、一侧开洞及两侧开洞的钢板剪力墙进行了数值分析。对不同开洞形式的钢板剪力墙进行了弹性屈曲分析和非线性滞回分析,研究了洞口加劲肋刚度、强度对开洞钢板剪力墙性能的影响。研究结果表明:增大加劲肋刚度,可提高开洞钢板剪力墙的弹性屈曲应力,当肋板刚度比超过所提出的下限时,加劲肋对开洞钢板剪力墙屈曲应力的提高幅度降低;宽高比较大时,加劲肋对开洞钢板剪力墙屈曲应力的提高更加显著,在相同的肋板刚度比条件下,宽厚比不同的开洞钢板剪力墙屈曲应力的提高幅度基本相同。建议中部开洞、一侧开洞及两侧开洞钢板剪力墙的肋板刚度比下限分别取30,15和25。滞回分析结果表明:肋板刚度比对开洞钢板剪力墙弹性刚度、承载力和耗能能力影响较小。加劲肋强度过低时,无法充分发挥钢板剪力墙屈曲后的拉力场作用。按所提出的强度验算公式设计的加劲肋,可为开洞钢板剪力墙拉力场提供可靠锚固,确保拉力场充分发展。  相似文献   

3.
外包混凝土组合钢板剪力墙抗剪承载力高、抗侧刚度大、耗能能力强,是一种有效的高层结构抗侧力构件。该构件利用钢筋混凝土板对钢板提供的侧向约束,使得钢墙板屈曲晚于剪切屈服。延性设计要求钢板进入剪切屈服后要有一定的变形耗能能力,混凝土板需达到一定的厚度才能保证钢板发生弹塑性屈曲。因此混凝土板厚需求是组合钢板剪力墙设计中的一个关键问题,但前人对于这方面的研究并不是很多。考虑栓钉间距、混凝土板厚度、钢板厚度、混凝土强度等级、墙板高宽比的变化对单面外包混凝土组合钢板剪力墙进行了弹塑性分析。基于有限元计算结果,提出了单面外包混凝土组合钢板剪力墙在层间侧移角小于0.4%时钢板不发生屈曲的混凝土板厚需求计算公式。  相似文献   

4.
十字加劲钢板剪力墙的抗剪极限承载力   总被引:13,自引:1,他引:13       下载免费PDF全文
我国《高层民用建筑钢结构技术规程》规定了钢板墙剪切弹性屈曲不先于剪切屈服,其明显的不足是没有利用板的屈曲后强度,同时弹性屈曲也不能作为结构在弹塑性阶段的设计指标。本文应用板的大挠度弹塑性有限元方法对十字加劲方形钢板剪力墙的屈曲后性能和极限承载力进行了系统的研究,并在大量数值分析的基础上,提出了以板的平均剪切应变相应的剪应力作为钢板剪力墙承载能力的极限状态,以达到利用薄板屈曲后强度的目的,进而提出了钢板剪力墙承载力的设计简化计算公式及钢板墙侧柱刚度阈值的计算公式,供设计参考。数值计算结果表明,影响钢板墙抗剪性能主要有三个参数:板高厚比、肋板刚度比和边柱刚度。  相似文献   

5.
由传统平钢板剪力墙结构引到波形钢板剪力墙,从特性上说明两者的应用差异。对于波形钢板的弹性稳定特性,包括弹性受压屈曲和弹性剪切屈曲,从理论推导和有限元数值分析两方面加以阐述。根据铁木辛柯板壳理论中波形钢板的弯曲平衡微分方程,确定波形钢板在中面内力条件下的稳定平衡微分方程,并推导解析解,与数值结果对比,两者吻合较好。对于弹性剪切屈曲,由有限元方法得到不同高宽比剪力墙的弹性剪切应力。  相似文献   

6.
波形钢板剪力墙抗震性能试验研究   总被引:1,自引:0,他引:1  
为研究波形钢板剪力墙在水平荷载作用下的抗侧力性能,完成了水平波形和竖向波形的钢板剪力墙模型的低周往复加载试验,并采用ABAQUS有限元软件对波形钢板剪力墙模型进行了模拟分析。试验结果表明:波形钢板剪力墙结构具有较高的侧向承载力、较强的抗剪屈曲能力和稳定的滞回性能;竖向波形钢板剪力墙在加载过程中发生了沿墙体对角线的X形剪切破坏;水平波形钢板剪力墙在加载过程中未出现波形钢板的屈曲破坏。因此,水平波形钢板剪力墙的极限荷载比竖向波形钢板剪力墙的更高、延性更好、滞回曲线更加饱满。在水平受剪时,竖向波形钢板剪力墙易产生拉压效应,水平波形钢板剪力墙易发生H型钢柱屈曲。波形钢板与边缘约束H型钢柱之间的焊缝未出现开裂,焊缝连接保证结构的整体性能。对比有限元分析结果与试验得到的数据,水平波形钢板剪力墙的荷载、位移比竖向波形钢板剪力墙的更接近试验值。采用有限元法对不同波角和钢板厚度的水平波形钢板剪力墙的抗侧性能进行了分析,结果表明:当钢板比较薄的时候,容易发生波形钢板的剪切破坏;当钢板较厚的时候,容易发生边缘约束H型钢柱的过早屈曲,对结构的承载力和延性不利;当波形钢板的波角为45°时,波形钢板剪力墙的承载力以及延性性能最佳。波角过大或过小时,剪力墙承载力均有所降低。因此,水平波形钢板剪力墙宜采用45°波角与厚度适中的钢板。  相似文献   

7.
通过对不同轴压比的3片墙体试件的拟静力试验,对桁架式多腔体钢板组合剪力墙的破坏模式、承载能力、刚度退化、耗能能力、整体水平变形及剪切变形等进行了探究和分析。结果表明:此组合剪力墙承载力较高并具有良好的延性和耗能能力;高宽比为2. 0时,试件的破坏特征以钢板局部剪切屈曲、端柱钢管压屈和撕裂以及混凝土压碎为主,试件的剪切变形占整体水平变形的20%~40%,试件均发生了剪压破坏;轴压比对试件的抗剪承载力和刚度退化的影响较小,轴压比较小时试件具有较好的延性。  相似文献   

8.
屈曲约束钢板剪力墙具有刚度大、抗震性能好、适用范围广的优点,大高宽比屈曲约束剪力墙可用于钢结构住宅等剪力墙尺寸受限制的建筑中。提出一种新型大高宽比屈曲约束钢板剪力墙,并对4组这种屈曲约束钢板剪力墙的缩尺模型进行单调加载和循环加载试验,并与一组纯钢板剪力墙进行对比。试验结果证明,预制混凝土板可以有效地对钢板平面外屈曲进行约束,从而大大提高钢板剪力墙的承载力和耗能性能。还通过理论研究,得到这种屈曲约束钢板剪力墙初始刚度和屈服承载力的理论公式。通过试验结果、理论公式以及有限元分析结果的对比,验证理论公式的正确性。  相似文献   

9.
开洞加劲钢板剪力墙的力学性能研究   总被引:1,自引:0,他引:1  
针对深圳梅山苑7号楼钢板剪力墙上开洞问题,对开洞闭口加劲钢板剪力墙进行了有限元研究,给出了不同开洞位置和不同开洞率钢板剪力墙荷载-侧移曲线,分析了开洞位置和开洞率对初始刚度、屈曲荷载和极限荷载的影响.研究表明,中间开洞对钢板剪力墙刚度和极限承载力影响较大,可以采用线性公式计算开洞对钢板剪力墙初始刚度、屈曲荷载和极限荷载的折减.  相似文献   

10.
为研究页岩烧结保温砌块超薄灰缝墙体的抗震性能,以有无构造柱、竖向压应力、高宽比、开洞率及开洞形式作为设计参数设计并制作10个试件,对其进行水平低周反复荷载试验。分析了该类墙体在拟静力荷载作用下的破坏过程和破坏形态,研究了构造柱、竖向压应力、高宽比、开洞率及开洞形式对其承载力、滞回曲线、骨架曲线、延性、耗能性能、刚度退化等的影响。试验结果表明:构造柱-圈梁体系充分发挥了其对内部砌体墙的约束作用,实现了墙体"裂而不倒"的目标;增加竖向压应力、减小高宽比,均可提高墙体的受剪承载力,减缓墙体刚度退化速度;构造柱的存在对提高墙体受剪承载力和延性均有明显效果;洞口的削弱作用使墙体受剪承载力下降,耗能能力变差。建立了页岩烧结保温砌块超薄灰缝墙体受剪承载力计算式,计算结果与试验结果吻合较好。  相似文献   

11.
提出一种新型钢板墙-波纹钢板剪力墙。设计了两个不同形式的波纹钢板剪力墙试件,采用低周往复加载试验,分析二者的破坏形式,对滞回曲线、骨架曲线、延性、刚度及耗能性能等性能进行了系统的研究。研究表明:两种波纹钢板剪力墙均具有较高的极限承载力及初始刚度;屈曲承载力较高,屈服位移较小,能够较快地进入塑性耗能;滞回曲线较为饱满,不易发生捏缩现象。与横向波纹钢板剪力墙相比,竖向波纹钢板剪力墙的滞回性能及屈服后承载力更加出色。结果表明,在合理的参数设计下,所提出的波纹钢板剪力墙承载力高、耗能性能较强,是一种极具前景的新型抗侧力构件及耗能构件。  相似文献   

12.
为研究双波形钢板剪力墙的滞回性能,利用有限元软件ABAQUS分别建立单波形钢板剪力墙与双波形钢板剪力墙的有限元模型,对2种波形钢板剪力墙在低周往复荷载作用下的受力机制及滞回性能进行对比分析,研究了内嵌波形钢板的设计参数对双波形钢板剪力墙滞回性能的影响规律,给出了波形钢板设计参数的取值建议。结果表明:与单波形钢板剪力墙相比,双波形钢板剪力墙的抗侧刚度、承载能力及耗能能力均提高,但其延性有一定程度的降低; 内嵌波形钢板的厚度与波形几何尺寸是影响双波形钢板剪力墙滞回性能的关键参数,随着厚度的增大,双波形钢板剪力墙的抗侧刚度、承载能力、耗能能力及延性均提高; 随着波长的增加,双波形钢板剪力墙的抗侧刚度提高,但承载能力及耗能能力降低; 随着波幅的增加,双波形钢板剪力墙的抗侧刚度降低,但承载能力及耗能能力均提高。  相似文献   

13.
In this paper, composite shear walls with different encased steel plates (flat, horizontal corrugated, and vertical corrugated) were tested and simulated by Abaqus to investigate the seismic behavior of corrugated steel plate concrete composite shear walls (SPCSWs). The failure characteristics, deformation and energy dissipation capacity, and stiffness and bearing capacity of the structures under low‐frequency cyclic load were analyzed, and indexes of the seismic performance were obtained. The formulas of the shear‐bearing capacity of steel plate concrete composite shear walls are suggested, and the shear‐sharing ratio of each member is obtained. According to the obtained results, corrugated steel plates can bond with concrete well, and the bearing capacity of the vertical corrugated SPCSW are higher than that of the horizontal corrugated SPCSW. Compared with flat SPCSW, corrugated SPCSW has higher initial stiffness and lateral stiffness, better ductility and energy dissipation ability, and the degradation of bearing capacity and stiffness is slower. The shear‐sharing ratio of a steel plate is larger than that of reinforced concrete in the flat SPCSW and the vertical corrugated SPCSW, the shear force shared by steel plate and reinforced concrete in horizontal corrugated SPCSW is basically the same.  相似文献   

14.
为研究波形钢板-混凝土组合剪力墙的抗震性能,完成了竖向波形钢板-混凝土组合剪力墙、水平波形钢板-混凝土组合剪力墙以及平钢板-混凝土组合剪力墙拟静力试验,研究了波形钢板-混凝土组合剪力墙在低周往复荷载作用下的变形能力和破坏模式,分析了荷载-位移滞回曲线、骨架曲线、各阶段特征荷载和位移值等,以及结构的破坏特征、变形和耗能能力、刚度和承载力退化。试验结果表明:波形钢板-混凝土组合剪力墙具有较大的抗侧刚度、较好的延性和耗能能力;与平钢板-混凝土组合剪力墙相比,波形钢板-混凝土组合剪力墙有较好的界面黏结性能,而平钢板-混凝土剪力墙由钢板变形引起的混凝土剥落严重;波形钢板-混凝土组合剪力墙的初始刚度较平钢板-混凝土组合剪力墙的高,竖向波形钢板-混凝土组合剪力墙的承载力和极限位移较水平波形钢板-混凝土组合剪力墙的高,波形钢板-混凝土组合剪力墙的承载力退化和刚度退化比平钢板-混凝土组合剪力墙的慢,表现出较好的受力性能。采用ABAQUS有限元软件可以较好地模拟试验,有限元分析结果表明,波形钢板的应力分布比较均匀,组合作用效应明显,适合在抗震结构中采用。  相似文献   

15.
This paper describes the study of the low-yield-point (LYP) steel plate shear walls under in-plane load. In the LYP steel plate shear wall system, LYP steel was selected for the steel plate wall while the boundary frame was constructed by the high strength structural steel. A series of experimental studies examined the inelastic shear buckling behavior of the LYP steel plate wall under monotonic in-plane load. The effects of width-to-thickness ratio on the shear buckling of LYP steel plates were examined. The stiffness, strength, deformation, and energy dissipation characteristics were investigated by performing cyclic loading tests on the multistorey LYP steel plate shear walls. Excellent deformation and energy dissipation capacity were obtained for all specimens tested. The LYP steel plate shear wall system is able to exceed 5% of storey drift angle under lateral force.  相似文献   

16.
对于超薄加劲钢板剪力墙,由于钢板超薄,采用传统焊接工艺将导致严重的焊接变形,故需要采用改进焊接工艺,即将钢板墙在加劲肋处断开,进行弯折组合后焊接并形成加劲肋。为研究采用改进焊接工艺完成的超薄加劲钢板剪力墙的受剪性能,进行了足尺试件的受剪性能试验,研究了钢板墙的受剪破坏形态、滞回特性、承载能力及耗能能力等,验证了在竖向加劲肋位置采用的改进连接构造及焊缝工艺满足受剪承载力要求,并对不同钢柱截面、不同墙宽高比对钢板墙受剪性能的影响进行了对比分析。结果表明:采用改进工艺的钢板剪力墙满足受剪承载力要求且具有稳定的耗能能力,随着钢柱截面积增大,钢板墙的侧移刚度、峰值荷载均有所增加,相应的极限位移、耗能能力有所下降;随着墙宽高比减小,钢板墙的侧移刚度、屈服荷载、峰值荷载均相应降低,相应的极限位移、耗能能力有所提高。采用通用有限元分析软件ANSYS对超薄加劲钢板剪力墙的受剪性能试验进行了数值模拟,有限元结果与试验结果总体吻合良好,有限元分析可以很好地模拟超薄加劲钢板剪力墙的全受力过程和破坏模式。  相似文献   

17.
通过对2组内置钢板混凝土组合剪力墙和内置钢桁架混凝土组合剪力墙拟静力试验的模拟,确定计算模型的建立方法,并选取2片相同含钢率的内置钢板混凝土组合剪力墙和内置钢桁架混凝土组合剪力墙模型进行侧向低周反复荷载作用下的计算分析,对比了2片剪力墙模型的承载力、刚度及其退化过程、延性、耗能及滞回特性,并选取实际工程为算例,对采用两种组合剪力墙的整体结构从抗侧刚度、破坏模式、层间位移角、位移时程及塑性发展等方面进行了抗震性能的对比。研究结果表明:对于构件层次,随着墙体高宽比的增大,内置钢板混凝土组合剪力墙的承载力、耗能能力及延性逐渐优于内置钢桁架混凝土组合剪力墙;对于结构层次,当墙体高宽比较大时,采用内置钢板混凝土组合剪力墙结构的抗震性能要优于采用内置钢桁架混凝土组合剪力墙的结构。  相似文献   

18.
为研究开洞形式及槽钢加劲肋对钢板剪力墙抗震性能的影响,对2个1/3缩尺的单跨双层侧边开洞-斜向槽钢加劲钢板剪力墙进行了低周往复荷载试验,得到了双侧开洞 交叉加劲钢板剪力墙和单侧开洞-多道斜向槽钢加劲钢板剪力墙的荷载-位移曲线、破坏特征、骨架曲线等,分析了两种钢板墙的承载能力、延性、退化特性以及耗能能力等性能。通过分析框架梁的受力情况,给出了考虑加劲肋作用的开洞处梁腹板最小厚度计算公式。试验结果表明,两种形式的槽钢加劲钢板剪力墙均有良好的抗震性能。双侧开洞 交叉加劲钢板剪力墙试件的滞回环饱满呈梭形;单侧开洞-多道斜向槽钢加劲钢板剪力墙试件在加载前期滞回曲线有“捏缩”现象,耗能梁段形成后“捏缩”现象消失。槽钢加劲肋能有效限制内填钢板的屈曲变形,加载过程中未发生扭转,避免加劲肋破坏导致加劲效果失效。双侧开洞 交叉加劲钢板剪力墙试件受槽钢加劲肋作用,中梁开洞处梁腹板承受剪力增大约30%。建议在开洞处梁腹板合理布置加劲肋,避免框架梁过早屈服影响整体结构性能的发挥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号