首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
具有本征低晶格热导率的I-V-VI2族三元硫属化合物在热电领域引起了广泛关注。AgBiSe2作为这类化合物中少有的n型半导体, 成为一种有潜力的热电材料。本工作系统研究了AgBiSe2的热电性能。基于Ag2Se-Bi2Se二元相图, 单相的(Ag2Se)1-x(Bi2Se3)x的成分在x=0.4~0.62范围可调, 使得该材料载流子浓度具有可调性。结果表明, 通过组分调控获得了较宽范围的载体浓度1.0×1019~5.7×1019 cm-3, 并基于声学声子散射的单一抛物带模型对其电传输性能进行了综合评估。本研究获得的最高载流子浓度接近理论最优值, 在700 K实现了最高ZT值0.5。本研究有助于深入理解AgBiSe2的传输特性和决定热电性能的基本物理参数。  相似文献   

2.
在GeTe-Bi2Te3赝二元系统中, (GeTe)n(Bi2Te3)m化合物往往具有较低的晶格热导率, 但其中很多组分的热电性能尚未得到系统研究。本研究通过熔融、淬火、退火结合放电等离子烧结工艺制备了一系列(GeTe)nBi2Te3(n=10, 11, 12, 13, 14)单相多晶样品, 并对其相组成和热电性能进行表征和研究。掺杂Bi2Te3可以显著增强点缺陷声子散射, 大幅度降低材料的晶格热导率, 在723 K时, (GeTe)13Bi2Te3样品的总热导率低至1.63 W?m -1?K -1。此外, 掺杂Bi2Te3和调控GeTe的相对含量, 提高了材料的载流子有效质量, 即使在较高的载流子浓度下, 样品依然保持较高的塞贝克系数和功率因子, 在723 K, (GeTe)13Bi2Te3样品获得最大的功率因子为2.88×10 -3 W?m -1?K -2, 最终(GeTe)13Bi2Te3样品在723 K获得的最大ZT值达到1.27, 较未掺杂的GeTe样品提高了16%。  相似文献   

3.
热电材料可有效回收废热并将其转化为电能, 然而转换效率受复杂耦合热电参数的限制。高效热电材料需要具有优异的电传输和良好的隔热性能。具有类金刚石结构的Cu2SnSe3是一种潜在的中温区热电材料, 本研究通过在Sn位和Cu引入Ag离子, 分别获得了高电传输相Cu2Sn0.93Ag0.07Se3和低热传输相Cu1.91Ag0.09SnSe3, 然后通过机械混合和烧结制备了Cu2Sn0.93Ag0.07Se3和Cu1.91Ag0.09SnSe3两相复合的材料。利用两相材料的晶体结构相同和晶格常数匹配的特点, 在高温段有效地协同调控了Cu2SnSe3材料的电输运和热输运性能, 从而使材料的高温热电性能得到优化, 用有效介质理论很好地描述了高性能的两相复合材料的电和热传输行为。  相似文献   

4.
将原料封装入真空石英管, 在873 K进行固相反应制备了Li掺杂的Cu1-xLixInSe2 (x = 0-0.4) 块体材料, 并对该材料的结构、电学和光学特性进行了系统性的研究。Li掺杂之后, 样品的晶体结构还保持黄铜矿结构, 并能得到更大的晶粒。而电阻率从1.98×102 Ω·cm增大到 2.73×108 Ω·cm。光学能隙也从0.90 eV 提高到1.33 eV, 增大了光伏开路电压。实验结果表明, Li掺杂的Cu1-xLixInSe2 能有效提高光电材料的性能。  相似文献   

5.
SnS由低毒、廉价、高丰度的元素组成, 在热电研究领域受到广泛关注。采用机械合金化(MA)结合放电等离子烧结(SPS)工艺制备了n型SnS1-xClx(x=0, 0.02, 0.03, 0.04, 0.05, 0.06)多晶块体热电样品, 并研究了Cl-掺杂量对SnS物相、微观结构以及电热输运性能的影响。结果表明: Cl-的引入会提高电子浓度, 使SnS由本征p型转变为n型半导体。随着Cl-掺杂量的增加, n型SnS半导体室温下的霍尔载流子浓度从6.31×1014 cm-3 (x=0.03)增加到7.27×1015cm-3 (x=0.06)。x=0.05样品在823 K取得最大的电导率为408 S·m-1, 同时具有较高的泽贝克系数为-553 μV•K-1, 使其获得最大功率因子为1.2 μW·cm-1·K-2。Cl-的掺入会引入点缺陷, 散射声子, 使晶格热导率κlat由0.67 W·m-1·K-1(x=0)降至0.5 W·m-1·K-1 (x=0.02)。x=0.04样品在823 K获得了最大ZT为0.17, 相比于x=0样品(ZT~0.1)提高了70%。  相似文献   

6.
MnTe作为一种新型的无铅p型热电材料, 在中温区热电领域具有广阔的应用前景, 但其本身的热电性能不足以与高性能n型热电材料相匹配。本研究通过真空熔炼-淬火和放电等离子烧结的方法制备不同Ge掺杂量的致密且均匀的Mn1.06-xGexTe(x=0, 0.01, 0.02, 0.03, 0.04)多晶块体样品。过量的Mn可以有效抑制MnTe2相, 提高基体相的热电性能。通过掺杂4%Ge粉末, 材料的载流子浓度提高到7.328×1018 cm-3, 电导率在873 K增大到7×103 S∙cm-1, 功率因子提升至620 μW∙m-1∙K-2。同时, 通过点缺陷增强声子散射使材料的热导率降低到0.62 W∙m-1∙K-1, 实现了对材料电声输运性能的有效调控。Mn1.02Ge0.04Te在873 K获得了0.86的热电优值ZT, 较纯MnTe材料提高了43%。  相似文献   

7.
以Ta2O5为前驱体, Na2S2O3为S源, 采用水热法成功合成了新型S掺杂NaTaO3, 并以甲基橙为目标降解物,研究S元素掺杂对提高纳米NaTaO3的可见光光催化机理和反应历程。采用场发射扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱仪(UV-Vis DRS)和X射线衍射仪(XRD)等对所得样品进行分析。实验结果表明, 掺入S元素后, NaTaO3晶体的表面电荷和表面形貌没有发生明显变化。UV-Vis漫反射光谱分析结果表明S2-部分取代晶格中的O2-离子形成Ta-S-Ta键, 掺杂后的NaTaO3-xSx样品的光响应范围拓展至可见光区域。光降解实验结果表明, S掺杂NaTaO3在可见光下其光催化活性明显高于纯相NaTaO3。这是因为在NaTaO3-xSx晶体内S2-离子取代了部分O2-离子形成掺杂态。GC-MS实验结果表明, NaTaO3-xSx样品能够在可见光条件下将甲基橙(质荷比m/z=304)降解至m/z=156, 226和276的化合物, 随着降解时间增加, 可继续降解至m/z=156或m/z=212的化合物, 并最终转化为无机小分子(SO42-, NO3-和NH4+)。而且, NaTaO3-xSx在光降解过程中非常稳定, 重复使用10次后光催化活性因催化剂损失而略微下降。  相似文献   

8.
采用Cu或Ag掺杂是提高n型Bi2Te3基合金热电性能的有效途径但Cu或Ag的掺杂行为仍不明确,其背后的作用机理还需要进一步证实本文对Ag掺杂n型Bi2Te2.7Se0.3多晶热电材料的结构和输运性质进行了研究.拉曼和X射线光电子能谱分析表明,Ag离子位于间隙位置,并向邻近的Te(Se)转移电子.Ag与Te(Se)成键导致层间相互作用增强,载流子迁移率升高.由于Ag–Te(Se)成键,Bi2Te2.7Se0.3多晶的本征Te(Se)空位形成得到缓解,进而逐渐将载流子浓度调节到较低水平,因此Bi2Te2.7Se0.3的室温热电性能得到显著改善.与单一Bi2Te2.7Se0.3相比,最优Ag掺杂Bi2Te2.7Se0.3材...  相似文献   

9.
Mg对La2Ce2O7的掺杂可提高其热膨胀系数、降低其热导率, 从而改善其作为热障涂层材料的性能。采用溶胶-凝胶法制备了(La1-xMgx)2Ce2O7-x系列组成样品。X射线测试表明: 当 0≤x≤0.4时, 所有(La1-xMgx)2Ce2O7-x 样品均与La2Ce2O7具有相同的缺陷萤石结构, 且晶胞参数随x的增大而递减; 当x?0.4时, 样品中出现MgO的峰。在组成相同的情况下, 样品(La1-xMgx)2Ce2O7-x (0≤x≤0.4)的热膨胀系数随温度升高而增大, 而热导率随温度升高而降低。在相同温度下, 不同组成样品(La1-xMgx)2Ce2O7-x (0≤x≤0.4)的热膨胀系数随x的增大而增大; 而样品的热导率则随Mg掺杂量的增加呈先增大后减小的趋势。在此基础上, 探讨了Mg掺杂对La2Ce2O7的物相、晶胞参数、热膨胀系数以及热导率的影响机理。  相似文献   

10.
12CaO·7Al2O3电子化合物(C12A7:e -)是一种具有低工作温度和低逸出功等优点的新型电子化合物阴极材料。通过高温固相反应结合放电等离子烧结制备Sr掺杂(Ca1-xSrx)12A7 (0≤x≤0.05)块体, 并在1100 ℃采用Ti颗粒还原20 h成功制得电子化合物(Ca1-xSrx)12A7:e -。第一性原理计算结果表明, (Ca1-xSrx)12A7:e -与C12A7:e -相比, 框架导带下移, 费米能级附近态密度增加, 这将有利于电输运和发射性能的优化。室温电输运测试结果表明, Sr掺杂有利于C12A7:e -电输运性能的优化, 其中(Ca0.96Sr0.04)12A7:e -样品在室温下具有最高电导率(1136 S/cm)以及最高载流子浓度(2.13×10 21 cm -3), 与相同条件下制备的C12A7:e -样品相比, 载流子浓度提高近2个数量级, 表明Sr掺杂可以有效缩短制备C12A7:e -的制备时间。热电子发射性能测试结果表明, 随着Sr掺杂量的增加, 热电子发射性能逐渐提高, 其中(Ca0.96Sr0.04)12A7:e -样品具有最佳的热发射性能, 在1100 ℃外加电压3500 V时, 发射电流密度达到1.45 A/cm 2, 零场发射电流密度达到0.74 A/cm 2, 理查生逸出功降低至1.86 eV。  相似文献   

11.
通过水热法合成不同Se掺杂量的Bi2Te3-xSex (0 ≤x ≤0.45)纳米粉体, 采用放电等离子烧结技术, 制备出致密度较高的块体材料。通过X射线衍射、扫描电镜、透射电镜等测试手段对材料的微结构进行了表征, 并重点研究了含有不同Se掺杂量块体材料的显微结构和热电性能。结果表明: Se元素的掺杂使得粉体XRD特征衍射峰向高角度偏移, 并且衍射峰出现宽化, 晶粒尺寸变小。随着Se掺杂量的增加, 块体材料的电导率先增大后减小; Se元素的掺杂有效地降低了材料的热导率, 并提高了材料的Seebeck系数。研究结果表明: 在整个测试温度区间, 所有经过Se掺杂的样品ZT值都高于未掺杂样品。当Se掺杂量为0.3时, 样品具有最大的ZT值, 平均约为0.51, 并在475 K时达到最大值0.57, 相比未经Se掺杂的Bi2Te3提高了159%。  相似文献   

12.
Mg2(Si,Sn)合金热电材料具有成本低廉、环境友好等优点, 作为一种绿色环保的中温区热电材料一直受到广泛关注。在Mg2(Si,Sn)基材料中掺杂大剂量Sb可诱发Mg空位, 从而有效降低材料的热导率, 但同时Seebeck系数也会降低。研究采用高温熔炼及真空热压法成功合成了Mg2.12-ySi0.4Sn0.5Sb0.1Zny (y=0~0.025)试样, 通过在大剂量Sb掺杂的Mg2(Si,Sn)基材料中添加Zn元素, 研究了大剂量Sb和微量Zn双掺杂对材料电声输运特性的综合影响。研究结果表明, Zn-Sb双掺杂可通过有效抑制材料电子热导率的方法大幅降低Mg2(Si,Sn)合金材料的总热导率, 与此同时明显提高掺Zn试样的塞贝克系数以弥补其电导率的损失, 维持材料较为优异的电学性能。最终, 热导率的大幅优化及电学性能的维持实现了材料综合热电性能的显著提升, 其中, 成分为Mg2.095Si0.4Sn0.5Sb0.1Zn0.025的材料在823 K下热电优值ZT达到1.42。  相似文献   

13.
采用单靶磁控溅射法制备了铜铟硒(CIS)和铜铟锌硒(CIZS)薄膜。XRD表征发现CIZS-300出现了与其它薄膜不同的择优取向, 分析认为贫铜的状态和适宜温度可能促使薄膜择优取向从(112)向(220)转化; 拉曼光谱在171 cm-1处出现的较强峰, 和206 cm-1处出现的较弱峰, 分别为A1和B2振动模式, 而Zn的掺入导致A1拉曼峰的宽化和蓝移; Zn的掺入使Cu含量改变进而使CIZS禁带宽度增大, 这是由于Se的p轨道和Cu的d轨道杂化引起的; SEM测试结果表明CIZS薄膜表面比CIS表面更为紧密、平滑。  相似文献   

14.
二维过渡金属硫属化合物具有优异的电学和光学特性, 形貌控制及带隙调控对于其在光电子学、光子学、纳米电子学领域中的应用至关重要。研究采用CVD技术在SiO2/Si衬底上生长了垂直排列ReS2纳米片材料, 硒化处理后得到ReS2(1-x)Se2x合金纳米片, 并研究了硒化温度(700、850 和 920℃)及硒化时间(0.5、1和1.5 h)对ReS2(1-x)Se2x合金纳米片形貌及组分的影响。XPS元素定量分析及紫外-可见-近红外吸收光谱研究表明ReS2(1-x)Se2x样品中Se含量可以在x=0(纯ReS2)到x=0.86之间调变, 相应材料的带隙可从1.55 eV (800 nm)调变到1.28 eV (969 nm)。SEM结果显示ReS2(1-x)Se2x纳米片的结构受到硒化温度和硒化时间的影响, 硒化温度升高和硒化时间延长会破坏纳米片的垂直结构。上述结果表明本研究成功合成了垂直排列ReS2(1-x)Se2x合金纳米片, 该材料在电化学催化、功能电子器件和光电子器件方面具有潜在应用价值。  相似文献   

15.
Stoichiometric crystals of Bi2Te3 and Bi2Te2.9Se.1 have been grown from the melt by the horizontal zone melting (HZM) technique. X-ray powder diffraction and energy dispersive X-ray analysis could prove that the grown crystals are stoichiometric with lattice constants a=0.4374 nm, c=3.044 nm for Bi2Te3 and a=0.4374 nm, c=3.038 nm for Bi2Te2.9Se.1. Dislocation density measurements are carried out by etch pit technique and are observed by scanning electron and optical micrograph. The mechanical strength of the as-grown, quenched and annealed crystals is assessed by the Vickers hardness measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号