共查询到17条相似文献,搜索用时 78 毫秒
1.
为在模型训练期间保留更多信息, 用预训练词向量和微调词向量对双向长短期记忆网络(Bi-LSTM)神经模型进行扩展, 并结合协同训练方法来应对医疗文本标注数据缺乏的情况, 构建出改进模型CTD-BLSTM (Co-Training Double word embedding conditioned Bi-LSTM)用于医疗领域的中文命名实体识别. 实验表明, 与原始BLSTM与BLSTM-CRF相比, CTD-BLSTM模型在语料缺失的情况下具有更高的准确率和召回率, 能够更好地支持医疗领域知识图谱的构建以及知识问答系统的开发. 相似文献
2.
中文自然语言文本中实体边界区分难、语法复杂度大,中文命名实体识别(NER)难度往往比英文命名实体识别大。针对中文NER中分词误差传播的问题,提出一种基于相互学习和SoftLexicon的中文命名实体识别模型MM-SLLattice。首先,向字级别表示的句子中加入词信息的模型;然后,在词信息的引入过程中通过结合开放词典与领域词典信息来提高模型的精度;最后,在训练过程中,引入了深度相互学习减小泛化误差提高模型的性能。实验结果表明,该模型在不同类型的中文数据集的实体识别能力有提升,MM-SLLattice在MSRA数据集上F1值为94.09%,比独立网络提高了0.41个百分点,对比实验中F1值也优于其他主流模型协同图形网络(CGN)、卷积注意力网络(CAN)、LR-CNN。所提模型可以更精确地提取中文实体。 相似文献
3.
针对预训练模型BERT存在词汇信息缺乏的问题,在半监督实体增强最小均方差预训练模型的基础上提出了一种基于知识库实体增强BERT模型的中文命名实体识别模型OpenKG+Entity Enhanced BERT+CRF。首先,从中文通用百科知识库CN-DBPedia中下载文档并用Jieba中文分词抽取实体来扩充实体词典;然后,将词典中的实体嵌入到BERT中进行预训练,将训练得到的词向量输入到双向长短期记忆网络(BiLSTM)中提取特征;最后,经过条件随机场(CRF)修正后输出结果。在CLUENER 2020 和 MSRA数据集上进行模型验证,将所提模型分别与Entity Enhanced BERT Pre-training、BERT+BiLSTM、ERNIE和BiLSTM+CRF模型进行对比实验。实验结果表明,该模型的F1值在两个数据集上比四个对比模型分别提高了1.63个百分点和1.1个百分点、3.93个百分点和5.35个百分点、2.42个百分点和4.63个百分点以及6.79个百分点和7.55个百分点。可见,所提模型对命名实体识别的综合效果得到有效提升,F1值均优于对比模型。 相似文献
4.
命名实体识别属于自然语言处理领域词法分析中的一部分,是计算机正确理解自然语言的基础。为了加强模型对命名实体的识别效果,本文使用预训练模型BERT(bidirectional encoder representation from transformers)作为模型的嵌入层,并针对BERT微调训练对计算机性能要求较高的问题,采用了固定参数嵌入的方式对BERT进行应用,搭建了BERT-BiLSTM-CRF模型。并在该模型的基础上进行了两种改进实验。方法一,继续增加自注意力(self-attention)层,实验结果显示,自注意力层的加入对模型的识别效果提升不明显。方法二,减小BERT模型嵌入层数。实验结果显示,适度减少BERT嵌入层数能够提升模型的命名实体识别准确性,同时又节约了模型的整体训练时间。采用9层嵌入时,在MSRA中文数据集上F1值提升至94.79%,在Weibo中文数据集上F1值达到了68.82%。 相似文献
5.
运用命名实体识别算法从海量医疗文本中抽取信息,对于构建知识图谱、对话系统等具有重要意义.然而医疗实体间存在嵌套、歧义和专业术语缩写多样性的问题,传统的基于统计的方法对于实体边界的定位存在较大偏差.考虑到医疗文本的复杂性,提出了多层Transformer模型,基于其multi-head和self-attention机制提... 相似文献
6.
7.
现有的生物医学命名实体识别方法没有利用语料中的句法信息,准确率不高.针对这一问题,提出基于句法依存分析的图网络生物医学命名实体识别模型.首先利用卷积神经网络(CNN)生成字符向量并将其与词向量拼接,然后将其送入双向长短期记忆(BiLSTM)网络进行训练;其次以句子为单位对语料进行句法依存分析,并构建邻接矩阵;最后将Bi... 相似文献
8.
为了使长短时记忆网络(Long Short-Term Memory,LSTM)更精确地提取句子较远的特征信息,提出一种融合顺序遗忘编码(Fixed-size Oradinally Forgetting Encoding,FOFE)结合循环神经网络的命名实体识别算法。利用FOFE可以保留任意长度句子信息的编码方式来增强LSTM对句子特征的提取能力。利用Bi-LSTM和FOFE编码分别对向量化表示的文本进行特征提取和编码表示。结合得到的两个特征向量,通过注意力机制对Bi-LSTM的输入与输出之间的相关性进行计算,最后利用条件随机场学习标签序列的约束。该算法分别在英文和中文两种语言的数据集中进行了对比实验,F1值分别达到了91.30和91.65,验证了该方法的有效性。 相似文献
9.
医疗命名实体识别指从海量的非结构化的医疗数据中提取关键信息,为医学研究的发展和智慧医疗系统的普及提供了基础.深度学习运用深层非线性的神经网络结构能够学习到复杂、抽象的特征,可实现对数据更本质的表征.医疗命名实体识别采用深度学习模型可明显提升效果.首先,本文综述了医疗命名实体识别特有的难点以及传统的识别方法;其次,总结了基于深度学习方法的模型并介绍了较为流行的模型改进方法,包括针对特征向量的改进,针对数据匮乏、复杂命名实体识别等问题的改进;最后,通过综合论述对未来的研究方向进行展望. 相似文献
10.
现有的维吾尔文命名实体识别主要采用基于条件随机场的统计学习方法,但依赖于人工提取的特征工程和领域知识。针对该问题,该文提出了一种基于深度神经网络的学习方法,并引入不同的特征向量表示。首先利用大规模未标注语料训练的词向量模型获取每个单词具有语义信息的词向量;其次,利用Bi-LSTM提取单词的字符级向量;然后,利用直接串联法或注意力机制处理词向量和字符级向量,进一步获取联合向量表示;最后,用Bi-LSTM-CRF深度神经网络模型进行命名实体标注。实验结果表明,以基于注意力机制的联合向量表示作为输入的Bi-LSTM-CRF方法在维吾尔文命名实体识别上F值达到90.13%。 相似文献
11.
针对基于双向长短期记忆网络-条件随机场(BiLSTM-CRF)的事件抽取模型仅能获取字粒度语义信息,可学习特征维度较低致使模型上限低的问题,以开放领域的中文公共突发事件数据为研究对象,提出了一种基于命名实体识别任务反馈增强的中文突发事件抽取方法FB-Latiice-BiLSTM-CRF.首先,将Lattice(点阵)机... 相似文献
12.
为了减少传统的命名实体识别需要人工制定特征的大量工作,通过无监督训练获得军事领域语料的分布式向量表示,采用双向LSTM递归神经网络模型解决军事领域命名实体的识别问题,并且通过添加字词结合的输入向量和注意力机制对双向LSTM递归神经网络模型进行扩展和改进,进而提高军事领域命名实体识别。实验结果表明,提出的方法能够完成军事领域命名实体的识别,并且在测试集语料上的F-值达到了87.38%。 相似文献
13.
为了解决多模态命名实体识别方法中存在的图文语义缺失、多模态表征语义不明确等问题,提出了一种图文语义增强的多模态命名实体识别方法。其中,利用多种预训练模型分别提取文本特征、字符特征、区域视觉特征、图像关键字和视觉标签,以全面描述图文数据的语义信息;采用Transformer和跨模态注意力机制,挖掘图文特征间的互补语义关系,以引导特征融合,从而生成语义补全的文本表征和语义增强的多模态表征;整合边界检测、实体类别检测和命名实体识别任务,构建了多任务标签解码器,该解码器能对输入特征进行细粒度语义解码,以提高预测特征的语义准确性;使用这个解码器对文本表征和多模态表征进行联合解码,以获得全局最优的预测标签。在Twitter-2015和Twitter-2017基准数据集的大量实验结果显示,该方法在平均F1值上分别提升了1.00%和1.41%,表明该模型具有较强的命名实体识别能力。 相似文献
14.
针对搜狐coreEntityEmotion_train语料核心实体识别和核心实体情感分析的任务,提出了基于注意力机制的长短期记忆神经网络结合条件随机场模型(AttBi-LSTM-CRF)。首先,对文本进行预训练,将每个字映射为维度相同的低维向量;然后,把这些向量输入到基于注意力机制的长短期记忆神经网络(AttBi-LSTM)中,以获取长远的上下文信息并集中注意力到与输出标签高度相关的信息上;最后,通过条件随机场(CRF)层获取整个序列的最优标签。将AttBi-LSTM-CRF模型与双向长短记忆神经网络(Bi-LSTM)、AttBi-LSTM和双向长短期记忆神经网络结合条件随机场(Bi-LSTM-CRF)模型进行对比实验。实验结果表明,AttBi-LSTM-CRF模型的准确率达到0.786,召回率达到0.756,F1值达到0.771,优于对比模型,验证了AttBi-LSTM-CRF性能的优越性。 相似文献
15.
针对网购评论命名实体识别中重要词汇被忽略的问题,在评论短文本处理基础上,借鉴多头注意力机制、词汇贡献度和双向长短时记忆条件随机场提出一种基于MA-BiLSTM-CRF模型的网购评论命名实体识别方法。首先,用词向量和词性向量的组合来表示评论文本语义信息;其次,用BiLSTM提取文本特征;然后,引入多头注意力机制从多层面、多角度提升模型性能;最后,用条件随机场(CRF)识别命名实体。实验结果表明,该方法能提升网购评论实体识别效果。 相似文献
16.
17.
正确识别裁判文书中的实体是构建法律知识图谱和实现智慧法院的重要基础。然而常用的命名实体识别(NER)模型并不能很好地解决裁判文书中的多义词表示和实体边界识别错误的问题。为了有效提升裁判文书中各类实体的识别效果,提出了一种基于联合学习和BERT的BiLSTM-CRF(JLB-BiLSTM-CRF)模型。首先,利用BERT对输入字符序列进行编码以增强词向量的表征能力;然后,使用双向长短期记忆(BiLSTM)网络建模长文本信息,并将NER任务和中文分词(CWS)任务进行联合训练以提升实体的边界识别率。实验结果表明,所提模型在测试集上的精确率达到了94.36%,召回率达到了94.94%,F1值达到了94.65%,相较于BERT-BiLSTM-CRF模型分别提升了1.05个百分点、0.48个百分点和0.77个百分点,验证了JLB-BiLSTM-CRF模型在裁判文书NER任务上的有效性。 相似文献