共查询到19条相似文献,搜索用时 62 毫秒
1.
基于SARIMA-GRNN-SVM的短期商业电力负荷组合预测方法 总被引:1,自引:0,他引:1
针对短期商业电力负荷预测准确性与周期难以满足现有电力现货市场的问题,提出了一种基于SARIMAGRNN-SVM(seasonal autoregressive integrated moving average-generalized regression neural network-support vector machine)的商业电力负荷组合预测模型。首先,对商业电力负荷变化的周期规律与随机因素的复杂影响进行了分析;然后,结合以上分析,选用SARIMA和GRNN为单一预测模型对商业电力负荷进行预测,并利用SVM进行组合,实现日前商业电力负荷预测;最后,通过某商业综合体的电力负荷数据进行验证。所提组合预测模型较单一预测模型拥有更优的预测精度与鲁棒性,可以为短期商业电力负荷预测提供借鉴。 相似文献
2.
针对电力负荷预测精度不高、效率低的问题,采用算术优化算法(AOA)和最小二乘支持向量机(LSSVM)的模型对经过互补集合经验模态分解(CEEMD)和模糊熵(FE)综合处理后的子序列进行预测,构建了CEEMD-FE-AOA-LSSVM预测模型。首先,利用FE算法对经过CEEMD处理后的各子序列进行熵值重组,该过程提高了模型的抗干扰能力和运算效率。然后,用AOA-LSSVM模型对处理后的子序列进行预测,并将预测叠加输出。最后,通过误差函数对模型进行横向对比和纵向对比,利用两种对比结果来检验其性能。通过实验可知,与CEEMD-LSSVM、AOA-LSSVM、CEEMD-AOA-LSSVM等其他模型相比,CEEMD-FE-AOA-LSSVM组合模型能够兼顾到预测精度与预测效率两方面,做到了综合性能的提升。同时也验证了经过CEEMD或AOA处理的模型能够有效地提升预测精度。 相似文献
3.
基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测 总被引:6,自引:5,他引:6
提出一种联合灰色模型(grey model,GM)和最小二乘支持向量机回归(least square support vector regression,LSSVR)算法的电力短期负荷智能组合预测方法。在考虑负荷日周期性的基础上,通过对历史负荷数据的不同取舍,构建出各种不同的历史负荷数据序列,并对每个历史数据序列分别建立能修正b 参数的GM(1,1)灰色模型进行负荷预测;采用最小二乘支持向量机回归算法对不同灰色模型的预测结果进行非线性组合,以获取最终预测值。该方法在充分利用灰色模型所需原始数据少、建模简单、运算方便等优势的基础上,结合最小二乘支持向量机所具有的泛化能力强、非线性拟合性好、小样本等特性,提高了预测精度。仿真结果验证了所提出组合方法的有效性和实用性。 相似文献
4.
将支持向量回归(SVR)算法引入短期负荷预测,为提高预测速度,根据负荷预测的特点,提出了一种SVR的在线训练算法,该算法通过不断输入新的负荷数据来更新回归函数,以获得更快的计算速度和较好的预测结果。和传统的SVR算法比较,它能在保证精度的同时大大减少支持向量的数目,具有更快的收敛性。仿真结果表明了算法的有效性。 相似文献
5.
将支持向量回归(SVR)算法引入短期负荷预测,为提高预测速度,根据负荷预测的特点,提出了一种SVR的在线训练算法,该算法通过不断输入新的负荷数据来更新回归函数,以获得更快的计算速度和较好的预测结果.和传统的SVR算法比较,它能在保证精度的同时大大减少支持向量的数目,具有更快的收敛性.仿真结果表明了算法的有效性. 相似文献
6.
基于灰色模型和神经网络组合的短期负荷预测方法 总被引:1,自引:0,他引:1
提出了一种基于灰色模型和神经网络组合的短期负荷预测方法.首先利用频域分解消除负荷序列的周期性,然后利用灰色模型计算负荷序列的历史拟合值和未来预测值,将其作为神经网络的输入.在历史数据中选择一天作为基准日,以该基准日的量为参照,以负荷的灰色模型拟合值相对基准日的变化量,以及温度变化量为BP神经网络的输入,实际负荷变化量为输出,训练神经网络并预测待预测日负荷的变化量,加上基准日负荷后得到预测负荷.该方法综合了灰色模型方法和神经网络方法的优点,仿真结果验证了方法的有效性. 相似文献
7.
提出一种基于原子分解和支持向量机(Atomic Decomposition SVM,A-SVM)的电力负荷组合预测方法。首先,采用基于最佳路径组合搜索策略的原子分解法对非平稳负荷信号进行跟踪和分解,得到多个原子分量和残差分量;然后对每个分解后的分量采用支持向量机方法进行数学建模,并利用该模型输出下一时刻的分量预测值,最终将各个分量预测值相叠加,作为下一时刻的负荷预测值。基于浙江省某地区电网的实测负荷数据进行算例仿真,并与另外2种已有方法进行对比,验证了本文所提算法能够将计算耗时减少到30.75 s,均方根误差降低到17.97%,绝对平均误差降低到11.85%。同时,也验证了本文所提方法具有良好的鲁棒性和统计意义,对今后地区电网的负荷预测工作可以起到借鉴作用。 相似文献
8.
9.
基于FHNN相似日聚类自适应权重的短期电力负荷组合预测 总被引:1,自引:1,他引:1
提出一种有效的组合预测新模型进行电力负荷短期预测。不同预测模型在不同情况下的预测结果和精度有所变化,因此组合预测模型的权重应随着预测情景的变化而变化。文中将原始负荷数据分为训练集、验证集和测试集3类,并选择4种单一预测模型,即自回归滑动平均(ARMA)模型、广义自回归条件异方差(GARCH)模型、人工神经网络(ANN)和支持向量机(SVM)分别进行模型预测。对于需要预测的负荷,根据历史数据,将一年的数据先按照季度分类,再分别按照月、日、小时,利用模糊神经网络(FHNN)将其聚类。根据不同单一预测模型在不同情景下的误差计算出组合权重,从而获得组合预测模型。算例分析验证了所提出的组合预测模型的有效性和精确性。 相似文献
10.
11.
12.
13.
14.
15.
16.
电网的可靠运行及持续发展离不开对短期电力负荷的高效、准确预测。针对表征电网负荷变化的历史数据具有复杂性和时序性等特点,且现有的机器学习预测方法仍存在依据经验选取关键参数的不足,利用卷积神经网络(CNN)提取表征负荷变化的多维特征向量,构造成时间序列输入到门控循环单元(GRU),并使用改进麻雀搜索算法(ISSA)对GRU网络中的超参数进行迭代寻优。预测试验样本来自云南某地区的负荷数据,所提方法的预测精度达到了98.624%,与循环神经网络(RNN)、GRU和长短期记忆(LSTM)等神经网络预测方法进行对比,算例表明,所提方法克服了依据经验选取关键参数难题的同时具有更高的预测精度。 相似文献
17.
基于负荷分解和实时气象因素的短期负荷预测 总被引:2,自引:3,他引:2
根据地区气象与负荷的相关关系,从总负荷中分解出对气象不敏感的基础负荷和受气象因素影响的气象敏感负荷,并分别采用灰色系统GM(1,1)模型和基于LMBP (Levernberg–Marquardt back propagation)算法的多层前馈神经网络对二者进行建模预测。在对实时气象因素、日特征气象因素与气象敏感负荷相关性分析的基础上,重点把握某些气象因素与气象敏感负荷之间的联系。通过合理选择神经网络的输入变量,实现了基于实时气象因素的短期负荷预测。实际应用证明了所提出方法的有效性。 相似文献
18.
基于改进的模糊神经网络的短期负荷预测 总被引:1,自引:0,他引:1
影响短期电力负荷预测的因素是多方面的,除节假日、日期类型和气象因素外,还有拉电或限电行为、持续高温等许多干扰因素。针对这些干扰因素,引入了"干预项",进而提出了一种改进的模糊神经网络预测的新方法;阐述了应用该方法进行短期负荷预测的基本原理、网络模型和预测过程。实例分析中分别给出了经"干预项"和未经"干预项"处理后的预测结果,未经"干预项"处理的预测误差明显偏大。同时采用三种方法对不同日期类型进行预测,结果表明新方法的预测误差最小,预测精度较高。 相似文献
19.
针对电力系统短期负荷的特点建立了将累积式自回归动平均法(autoregressive integrated moving average,ARIMA)和采用反向传播算法(back propagation,BP)的神经网络法相结合的短期负荷预测模型。该模型利用ARIMA方法对线性时间序列逼近能力强的特点首先对预测日负荷进行预测,然后应用BP神经网络方法对预测结果进行修正,因此克服了单一算法存在的不足。应用该模型对某地区电网进行负荷预测,结果表明该方法的预测效果较好 相似文献