共查询到18条相似文献,搜索用时 62 毫秒
1.
烧结温度对Cf/SiC复合材料结构及性能的影响 总被引:1,自引:0,他引:1
以碳纤维为增强体, 热压烧结制备了Cf/SiC复合材料, 研究了烧结温度对Cf/SiC复合材料密度、结构及性能的影响. 研究发现: 提高烧结温度能够促进Cf/SiC复合材料的致密度; 当烧结温度低于1850℃时, 升高烧结温度, 复合材料的强度和断裂韧性也随之提高. 当烧结温度为1850℃时, 复合材料的性能最优, 弯曲强度达500.1MPa, 断裂韧性为16.9MPa·m 1/2. 当烧结温度达到1880℃时, 复合材料性能反而下降. 相似文献
2.
以先驱体浸渍裂解工艺制备了Cf/Sic复合材料,在相同工艺条件下,研究了四种纤维织构:2.5D,三维四向,三维五向,三维六向对复合材料结构和性能的影响.研究结果表明,2.5D纤维织构的复合材料,其力学性能优于其它三种织构的复合材料,2.5D织构的复合材料弯曲强度达到了406.25MPa,三维四向织构复合材料弯曲强度只有128.80MPa,三维五向织构复合材料159.74MPa,三维六向织构复合材料150.42MPa,并结合纺织学的结构理论对这种影响进行了剖析. 相似文献
3.
4.
采用先驱体转化法,以聚碳硅烷/二甲苯、聚碳硅烷/二甲苯/碳化硅粉、聚碳硅烷/交联剂三种浆料体系分别浸渍增强体,裂解制备Cf/SiC复合材料,考察了浸渍浆料体系对Cf/SiC复合材料的结构和性能的影响。研究发现:聚碳硅烷/交联剂浆料制备复合材料所需周期最短,9个周期即可制得密度达1.78g.cm-3、开孔率为4.95%的复合材料;聚碳硅烷/二甲苯/碳化硅粉制备的复合材料密度最大,达1.87g.cm-3,并且制备的复合材料表面平整光洁;聚碳硅烷/二甲苯浆料制备的Cf/SiC复合材料力学性能最好,弯曲强度达455.9MPa,模量达90.6GPa,断裂韧性达18.9MPa.m1/2。研究结果表明,三种常用的浸渍浆料制备的复合材料各有其优点,在各个浸渍周期合理的选用浆料能有效的改善材料结构及性能。 相似文献
5.
制备工艺对Cf/SiC复合材料力学性能的影响 总被引:1,自引:0,他引:1
分别采用先驱体裂解-热压和先驱体浸渍-裂解方法制备出了Cf/SiC复合材料.重点探讨了不同制备工艺对复合材料纤维/基体间界面和力学性能的影响.研究表明,采用先驱体裂解-热压工艺制备复合材料时,由于制备温度较高,复合材料中纤维与基体间的界面结合强,同时纤维本身性能的退化严重,因此复合材料表现为脆性断裂,具有较低的力学性能.而采用先驱体浸渍-裂解法制备复合材料时,由于致密化温度较低,复合材料中纤维与基体的界面结合较弱,而且纤维的性能保留率较高.因此,纤维能够较好地发挥补强增韧作用,复合材料具有较好的力学性能, 其抗弯强度和断裂韧性分别为573.4MPa和17.2 MPa*m1/2. 相似文献
6.
研究了烧结助剂AIN 和B对Cf/SiC复合材料力学性能的影响。结果表明:B含量较低时(小于0.5w t% ),B的增加能有效地提高复合材料的抗弯强度与断裂韧性,继续增加B的用量至1w t% ,虽能大幅度提高复合材料的强度,但使复合材料的断裂韧性大大降低。AIN 与SiC高温反应形成固溶体,能起到强化和细化基体SiC晶粒以及改善SiC晶界结构的作用,但对复合材料内纤维与基体间界面的结合影响较小,因此与B的作用相比,AIN 对复合材料密度和力学性能的影响较小。烧结助剂为5w t% AIN-0.5w t% B,经1850℃和25MPa 热压烧结后的Cf/SiC复合材料具有较佳的综合力学性能,其抗弯强度与断裂韧性值分别为526.6MPa 和17.14MPa·m 1/2。 相似文献
7.
8.
9.
研究针对不同服役环境下2DSiC/SiC复合材料的电阻率特性进行了研究。从1300℃降至室温的无氧环境中,复合材料的电阻率随温度降低而增大;借助曲线拟合,建立了电阻率与温度之间的映射关系。在1300℃空气环境中氧化20和60 h后,由于PyC界面层和SiC基体的氧化,复合材料的导电性显著降低;以SiO2的含量定量表征氧化程度,建立了电阻率与氧化损伤之间的映射关系。复合材料的电阻率和应力随应变的变化趋势相似,电阻率变化率和刚度随应变的变化趋势相反。在线性阶段,基体开裂数量极少,刚度几乎不变,电阻率缓慢增大;在非线性阶段,基体开裂数量增加较快,造成刚度降低,电阻率快速增大;后半段的基体裂纹数量缓慢增多,刚度和电阻率变化率趋于平稳。 相似文献
10.
Cf/SiC复合材料的应用研究进展 总被引:1,自引:0,他引:1
王生朝 《材料科学与工程学报》2007,25(3):489-492
Cf/SiC复合材料充分结合了碳纤维和SiC基体的优势,表现出低密度,高强度,高韧性,耐高温,耐烧蚀,抗冲刷,高硬度和高耐磨性等特点,成为航空航天、军事、能源等领域理想的高温结构材料.目前Cf/SiC复合材料已达到实用化水平,研究重点已转向应用研究.本文主要介绍Cf/SiC复合材料在热结构部件、热防护系统及高温光学部件等领域的研究进展. 相似文献
11.
以Cf/SiC复合材料为基体, 采用原位反应法制备了MoSi2-SiC-Si涂层, 借助XRD、扫描电镜及能谱对涂层的结构及组成进行了分析研究, 并考查了其高温抗氧化性能. 结果表明, 涂层总厚度约120μm, 主要由MoSi2、SiC和Si组成. MoSi2-SiC-Si涂层具有优异的高温抗氧化性能, 在1500℃静态空气中氧化96h, 涂层试样失重仅1.8%. 涂层试样失重的主要原因是由于氧气通过涂层中的贯穿性裂纹与Cf/SiC复合材料基体发生了反应. 相似文献
12.
本文制备了不同氧含量的聚碳硅烷 (PCS) ,研究了其中氧含量及其结合方式在PIP工艺中对Cf SiC复合材料中碳纤维保留强度的影响。实验结果表明 ,PCS经过预氧化后 ,其内部的氧主要以稳定的Si -O键形式存在 ;其中氧含量的增加对浸渍裂解后碳纤维的保留强度影响不大 ;14 0 0℃处理的结果与 110 0℃处理的结果相比要好得多。 相似文献
13.
SiCf/SiC复合材料的制备与力学性能 总被引:2,自引:0,他引:2
分别采用先驱体裂解-热压和先驱体浸渍-裂解方法制备出了SiCf/SiC复合材料.重点探讨了不同制备工艺对复合材料纤维/基体间界面和断裂行为的影响.研究表明,采用先驱体裂解-热压工艺制备复合材料时,虽然烧结液相可以促进复合材料的致密化,但其同时导致纤维与基体间的界面结合强以及纤维本身性能的退化,因此复合材料表现为脆性断裂,具有较低的力学性能.而采用先驱体浸渍-裂解法制备复合材料时,由于致密化温度较低,复合材料中纤维与基体的界面结合较弱,而且纤维的性能保留率较高,因此,纤维能够较好地发挥补强增韧作用,复合材料具有较好的力学性能,其抗弯强度和断裂韧性分别为703.6MPa和23.1Pa.m1/2. 相似文献
14.
15.
在1650℃气相渗硅(Vapor Silicon Infiltration—VSI)制备了3D碳纤维增强SiC基复合材料(Cf/SiC),其密度约为1.85g/cm^3.当C/SiC界面涂层存在时,气相渗硅cf/SiC强度为239.5MPa;而无界面涂层存在时,Cf/SiC弯曲强度大幅下降,约为67.4MPa.无界面涂层保护时,气相渗硅过程中纤维与硅蒸气发生反应,使得纤维硅化,造成材料性能下降.纤维表面沉积的C/SiC涂层,不仅保护纤维,避免被硅侵蚀,而且具有弱化界面、偏转裂纹等作用,复合材料的断裂功得到显著提高.将气相渗硅温度提高到1700℃后,有界面涂层存在情况下Cf/SiC复合材料密度显著提高,达到2.25g/cm^3,强度基本与1650℃时相当. 相似文献
16.
17.
18.
三维碳化硅/碳化硅陶瓷基编织体复合材料 总被引:4,自引:0,他引:4
采用化学气相浸渗法(CVI),制备出三维Hi-Nicalon SiC/SiC陶瓷基纺织体复合材料,经30hCVI致密化处理后,复合材料的密度达到2.5g.cm^-3。所研制的三维SiC/SiC复合材料不仅具有较高的强度,而且表现出优异的韧性和类似金属材料非灾难性的断裂特征,复合材料的主要功能力学性能指标为:弯曲强度860MPa,断裂位移1.2mm,断裂韧性41.5MPa.m^1/2,断裂功28.1kJ.m^-2,冲击韧性360.0kJ.m^-2。 相似文献