首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
骨关节疾病自古以来是人类最高发的疾病之一, 随着老龄化的不断加快, 这类疾病日趋广泛, 关节外科医师面临着巨大挑战. 对人体关节的图像分割方法研究可以帮助医生进行临床诊断和治疗, 然而, 由于存在噪声、模糊、对比度低等问题, 医学图像的特征提取比普通图像更具挑战性, 而且目前大多数分割模型在编码器和解码器之间都采用了普通的跳跃连接, 没有注重解决跳跃连接过程中的信息间隙和损失问题. 为解决这些问题, 提出一种基于DH-Swin Unet的医学图像分割算法, 该模型在Swin-Unet模型的基础上, 在跳跃连接中引入密集连接的Swin Transformer块, 并加入混合注意力机制, 来强化网络的特征信息传递. 通过在某三甲医院提供的真实临床数据对所提方法的性能进行评价, 结果表明, 所提出的方法取得了DSC为86.79%、HD为32.05 mm的分割结果, 在关节疾病的临床诊断中具有一定的实用价值.  相似文献   

3.
李大海  王榆锋  王振东 《计算机应用研究》2021,38(11):3506-3509,3516
目前,已知基于深度学习的云分割方法通常采用传统U型编解码结构的网络,该结构虽能有效利用编码端的空间位置信息,但整个网络参数过多、计算量大,同时其编码端仅采用简单卷积与下采样操作,无法有效获取高质量的上下文语义特征信息.针对上述情况提出一种新型的轻量级U-Net模型用于云分割问题.整个模型采用跳跃连接编码端浅层和中层信息的新U型编解码结构,并在其编码端嵌入由分组卷积与注意力机制组成的优化模块,同时构建上下语义融合连接,连接编码端与解码端相应的上下层.实验结果表明,在公共基准数据集38-Cloud上,该模型相比其他主流云分割网络在分割精度与模型参数等方面均能取得更优异的结果.  相似文献   

4.
为了对CT图像中的肺结节进行准确地分割,提出了一种基于改进的U-Net网络的肺结节分割方法。该方法通过引入密集连接,加强网络对特征的传递与利用,并且可以避免梯度消失的问题,同时采用改进的混合损失函数以缓解类不平衡问题。在LIDC-IDRI肺结节公开数据库上的实验结果表明,该方法达到的Dice相似系数值、准确率和召回率分别为84.48%、85.35%和83.81%。与其他分割网络相比,该方法能够准确地分割出肺结节区域,具有良好的分割性能。  相似文献   

5.
膀胱癌是泌尿系统最常见的恶性肿瘤,也是目前花费最高的癌症之一.肿瘤的分割在疾病的辅助诊断、治疗规划中具有重要意义.传统的肿瘤分割需要消耗大量的劳动力.随着技术的不断发展,具有预处理少,准确率高等优势的卷积神经网络作为一种图像处理高效的技术,已经在图像分割领域取得了不错的成绩.目前医学图像分割领域得到较好反响的是U-Ne...  相似文献   

6.
深度学习在医学影像分割领域得到广泛应用,其中,2015年提出的U-Net因其分割小目标效果较好、结构具有可扩展性,自提出以来受到广泛关注.近年来,随着医学图像割性能要求的提升,众多学者针对U-Net结构也在不断地改进和扩展,比如编解码器的改进、外接特征金字塔等.通过对基于U-Net结构改进的医学影像分割技术,从面向性能...  相似文献   

7.
病灶精确分割对患者病情评估和治疗方案制定有重要意义,由于医学图像中病灶与周围组织的对比度低,同一疾病病灶边缘和形状存在很大差异,从而增加了分割难度。U-Net是近些年深度学习研究中的热点,为医生提供了一致性的量化病灶方法,一定程度上提高了分割性能,广泛应用于医学图像语义分割领域。本文对U-Net网络进行全面综述。阐述U-Net网络的基本结构和工作原理;从编码器个数、多个U-Net级联、与U-Net结合的其他模型以及3D U-Net等方面对U-Net网络模型的改进进行总结;从卷积操作、下采样操作、上采样操作、跳跃连接、模型优化策略和数据增强等方面对U-Net网络结构改进进行总结;从残差思想、密集思想、注意力机制和多机制组合等方面对U-Net的改进机制进行总结;对U-Net网络未来的发展方向进行展望。本文对U-Net网络的原理、结构和模型进行详细总结,对U-Net网络的发展具有一定积极意义。  相似文献   

8.
针对目前常用的细胞分割方法在对腺体细胞进行分割时易出现误分割和分割不精细的问题,提出一种以U-Net为基本框架,结合密集连接块和自注意力机制的腺体细胞分割模型.首先将U-Net结构中卷积层组合构建成密集连接块,以不同尺度从图像中提取信息;然后在解码端引入自注意力机制,通过对局部特征建立丰富的上下文依赖模型,抑制不必要的...  相似文献   

9.
李贞  任明武 《计算机与数字工程》2022,(8):1787-1790+1801
提出了一种基于U-Net的多光谱迷彩目标识别方法。设计数据采集方案采集迷彩目标多光谱数据;采用不同尺度卷积核提取联合的光谱空间特征;编码结构中采用残差学习加深网络深度,使网络能学习到更加丰富抽象的特征;对深层的特征图进行上采样与浅层特征图相加增强浅层特征图中的语义信息。与3通道U-Net语义分割网络相比,召回率提高了62.65%,F1-Score提高了50.18%,证明了采用多光谱识别迷彩目标的显著优势;与6通道U-Net语义分割网络相比,精确率保持基本不变的同时召回率提高了3.42%,F1-Score提高了1.62%,在保证检测准确的前提下进一步减少了误检。  相似文献   

10.
新型冠状病毒肺炎(COVID-19)自2019年爆发一直蔓延至今天,使用电子计算机断层扫描(CT)来诊断患者是否感染此病毒已经成为重要的诊疗手段。通过使用深度学习技术对肺部CT图像自动分割病变区域可以帮助医生更高效的判断患者是否感染病毒以及目前所处的病程。针对该问题,本文在U-Net模型的基础上结合残差连接,分层分裂模块(Hierarchical-SplitBlock),坐标注意力(CoordinateAttention)和特征内容感知重组(Carafe)上采样提出了一种改进的U-net模型对肺部CT图像病变区域进行分割。改进U-Net模型的Dice系数和m Iou系数分别为81.7%和76.9%,对比FCN等经典模型效果有所提升。  相似文献   

11.
医学图像对疾病的诊断、治疗和评估均有所帮助,准确分割医学图像中的器官对于辅助医生的诊断具有重要的实际意义.由于医学图像中各器官部位与周围组织的图像对比度低,不同器官的边缘和形状也会存在很大差异,从而增加了分割的难度.针对这些问题,本文提出了一种基于卷积神经网络和Transformer的医学图像语义分割网络,有效提高了医学图像语义分割的精度.特征提取部分使用ResNet-50网络结构,在特征提取后使用Transformer模块来扩大感受野.在上采样过程中加入多个跳跃连接层,充分利用各阶段的特征提取信息,来恢复至与输入图像相近的分辨率.在胃肠道医学图像分割数据集上的实验结果证明本文的方法可以有效分割医学图像中的器官组织,提升分割准确率.  相似文献   

12.
图像分割技术的主要对象为自然图像和医学图像,相对于自然图像而言,医学图像的语义分割通常需要较高的精度以进行下一步的临床分析、诊断和规划治疗。目前用于医学图像语义分割的深度神经网络模型由于仅考虑位置的平移不变性,存在局部感受野较小、无法表达长范围依赖关系的问题。设计一种面向医学图像的分割模型,基于内卷U-Net网络,使用内卷操作代替传统的卷积操作,并将内卷结构作为基本的网络结构,提升模型对医学图像局部特征的学习能力。在模型的瓶颈层引入注意力机制模块来学习图像长范围的依赖关系,以提高医学图像语义分割的精度。在肺部CT数据集上的实验结果表明,该模型的Dice系数为0.998,较基于卷积神经网络的分割模型约提高5%,并且大幅缩短Hausdorff距离,具有更高的分割准确度以及较好的稳健性。  相似文献   

13.
传统的医学图像分割网络存在分割精度低、图像信息易丢失、分割轮廓不清晰等问题。为提高医学图像分割准确率,提出一种结合胶囊网络与U-Net的多标签图像分割网络UCaps。以U-Net网络为架构,基于胶囊网络原理设计适用于胶囊网络的上采样算法,通过结合高斯混合模型作为聚类算法的EM路由算法聚合底层特征对高层特征的推导过程,使高层特征包含底层特征信息,同时底层特征间的位置、姿态等信息具有统一性。实验结果表明,相比U-Net、SegCaps、MaVec-Caps网络,UCaps网络的平均分割准确率为93.21%,其中左肺分割准确率达到98.24%,具有较高的图像分割准确率和较快的收敛速度。  相似文献   

14.
卷积神经网络(CNN)作为医学图像分割领域中U-Net基线网络的重要组成部分,其主要作用是处理局部特征信息之间的关系.而Transformer是一种能够有效强化特征信息之间的远距离依赖关系的视觉模型.目前的研究表明,结合Transformer和CNN可以在一定程度上提高医学图像分割的准确性.但是,由于医学图像的标注数据较少,而且训练Transformer模型需要大量数据,这使得Transformer模型面临耗时长和参数量大的挑战.基于这些考虑,本文在UNeXt模型的基础上,结合多尺度混合MLP和CNN,提出了一种新型的基于混合MLP的医学图像分割模型——LM-UNet.这种模型能够有效地增强局部与全局信息之间的联系,并加强特征信息间的融合.在多个数据集上的实验表明, LM-UNet模型在皮肤数据集上的分割性能明显提升,平均Dice系数达到92.58%,平均IoU系数达到86.52%,分别比UNeXt模型提高了3%和3.5%.在软骨和乳腺数据集上的分割效果也有显著提升,平均Dice系数分别比UNeXt提高了2.5%和1.0%.因此, LM-UNet模型不仅提高了医学图像分割的准确性,还增...  相似文献   

15.
新型冠状病毒肺炎(COVID-19)大流行疾病正在全球范围内蔓延.计算机断层扫描(CT)影像技术,在抗击全球COVID-19的斗争中起着至关重要的作用,诊断新冠肺炎时,如果能够从CT图像中自动准确分割出新冠肺炎病灶区域,将有助于医生进行更准确和快速的诊断.针对新冠肺炎病灶分割问题,提出基于U-Net改进模型的自动分割方...  相似文献   

16.
基于U-Net的高分辨率遥感图像语义分割方法   总被引:1,自引:0,他引:1       下载免费PDF全文
图像分割是遥感解译的重要基础环节,高分辨率遥感图像中包含复杂的地物目标信息,传统分割方法应用受到极大限制,以深度卷积神经网络为代表的分割方法在诸多领域取得了突破进展。针对高分辨遥感图像分割问题,提出一种基于U-Net改进的深度卷积神经网络,实现了端到端的像素级语义分割。对原始数据集做了扩充,对每一类地物目标训练一个二分类模型,随后将各预测子图组合生成最终语义分割图像。采用了集成学习策略来提高分割精度,在“CCF卫星影像的AI分类与识别竞赛”数据集上取得了94%的训练准确率和90%的测试准确率。实验结果表明,该网络在拥有较高分割准确率的同时还具有良好的泛化能力,能够用于实际工程。  相似文献   

17.
针对骨骼CT图像对比度较低、特征不明显、现有算法对骨骼特征提取不充分的问题,本文提出了一种基于U-Net的改进网络来实现骨骼数据的精确分割.在网络编码阶段,使用密集连接的空洞卷积模块加强骨骼特征的提取;在网络解码阶段,使用结合注意力机制的融合模块充分利用空间信息与语义信息,改善骨骼信息丢失的问题.改进算法在人体下肢骨骼CT数据集中Dice系数达89.44%, IoU系数达80.55%.与U-Net模型相比, Dice系数提高了5.1%, IoU系数提高了7.63%.实验结果表明,提出的优化算法对下肢骨骼CT图像可以达到精确分割的效果,对骨科疾病的治疗与术前规划提供了参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号