共查询到19条相似文献,搜索用时 93 毫秒
1.
2.
针对现有图像修复算法存在受损区域的形状和大小受限以及修复痕迹明显、修复边缘不连续的问题,文中提出一种基于生成对抗网络的图像修复方法。该方法采用生成对抗网络(Generative Adversarial Networks,GAN)这种新的生成模型作为基本架构,结合Wasserstein距离,同时融入条件对抗网络(CGAN)的思想;以破损图像作为附加条件信息,采用对抗损失与内容损失相结合的方式来训练网络模型,以修复破损区域。此方法能够修复大多数破损情况下的图像。在CelebA和LFW两个数据集上的实验结果表明,所提方法能够取得很好的修复效果。 相似文献
3.
4.
5.
深度图被广泛应用于三维重建等领域,然而,由深度相机捕获的深度图会产生各种类型的失真,这使得从深度图中准确估计深度信息变得困难。针对低质量深度图中存在的各种类型的噪声,提出一种基于生成对抗网络的深度图像去噪算法。生成对抗网络由生成网络和判别网络组成。在生成网络中引入残差网络,避免模型退化问题,使用跳跃连接,加快网络训练速度同时保证图像细节的有效传递;在判别网络中使用步幅卷积代替池化层,减少模型的计算量;通过优化模型的训练,使得生成的深度图像更加清晰。实验结果表明,该算法能够生成效果更好的深度图,在主观视觉和客观评价方面均优于其他算法。 相似文献
6.
医学图像在重建过程中总会受到噪声干扰,对于此问题,本文提出了 一种基于条件生成对抗网络(CGAN)的去噪方法,算法以完整图像作为网络的输入及输出,使生成的图像信息更加稳定可靠.为了适应CT图像的特点,本文对CGAN结构进行了改进,使其能够适应不同噪声水平下的加性高斯白噪声,为了提高效率,在判别器进行训练时采用了损失判别... 相似文献
7.
8.
基于条件深度卷积生成对抗网络的图像识别方法 总被引:7,自引:0,他引:7
生成对抗网络(Generative adversarial networks,GAN)是目前热门的生成式模型.深度卷积生成对抗网络(Deep convolutional GAN,DCGAN)在传统生成对抗网络的基础上,引入卷积神经网络(Convolutional neural networks,CNN)进行无监督训练;条件生成对抗网络(Conditional GAN,CGAN)在GAN的基础上加上条件扩展为条件模型.结合深度卷积生成对抗网络和条件生成对抗网络的优点,建立条件深度卷积生成对抗网络模型(Conditional-DCGAN,C-DCGAN),利用卷积神经网络强大的特征提取能力,在此基础上加以条件辅助生成样本,将此结构再进行优化改进并用于图像识别中,实验结果表明,该方法能有效提高图像的识别准确率. 相似文献
9.
目前没有能够使用简单的网络结构生成高质量特定图像的生成模型,针对这一项任务,本文结合边界平衡生成对抗网络(boundary equilibrium generative adversarial network,BEGAN)的优点,添加附加条件特征以及均方误差损失,建立了条件边界平衡生成对抗网络(conditional-BEGAN,C-BEGAN),使用这种方法提取其中的生成模型用于特定图像的生成,实验结果表明,该方法相比于其他监督类生成模型可以使用更简单的网络达到更快的收敛速度并且能够生成具有更好质量以及多样性的图片。 相似文献
10.
随着多媒体技术的发展,诸如黑白照片着色、医学影像渲染和手绘图上色等各种图像着色应用需求逐渐增多.传统着色算法大部分存在着色模式单一、在处理部分数据时着色效果不佳或者依赖人工输入信息等缺点,对此,设计了一种条件生成对抗网络和颜色分布预测模型相结合的图像着色方法.由生成对抗网络生成着色图像,并通过预测模型的预测值来对生成器... 相似文献
11.
视频监控、军事目标识别以及消费型摄影等众多领域对图像清晰度有很高的要求.近年来,深度神经网络在视觉和定量评估的应用研究中取得较大进展,但是其结果一般缺乏图像纹理的细节,边缘过度平滑,给人一种模糊的视觉体验.本文提出了一种基于生成对抗网络的图像清晰度提升方法.为了更好的传递图像的细节信息,采用改进的残差块和跳跃连接作为生... 相似文献
12.
13.
面部表情迁移是计算机视觉角色动画领域的关键技术,但现有面部表情迁移方法存在生成表情不自然、缺乏真实感、迁移模型复杂以及训练难度大等问题.为此,构建一种基于条件生成式对抗网络的面部表情迁移模型.通过设计域分类损失函数指定表情域条件,使单个生成器学习多个表情域之间的映射,同时利用模型生成器和判别器之间的条件约束与零和博弈,在仅训练一个生成器的情况下同时实现7种面部表情迁移.实验结果表明,该模型能够有效进行面部表情迁移并且鲁棒性较强,其生成的面部表情较StarGAN模型更自然、逼真. 相似文献
14.
15.
基于生成对抗网络的图像修复算法在修复大尺寸缺失图像时,存在图像失真较多与判别网络性能不可控等问题,基于谱归一化条件生成对抗网络,提出一种新的图像修复算法。引入谱归一化来约束判别网络的判别性能,间接提高修复网络的修复能力,并根据控制判别网络性能对谱归一化进行理论分析。通过类别信息约束特征生成,保证修复图像的内容不变性,引入扩展卷积算子对待修复图像进行像素级操作,解决修复图像缺乏局部一致性的问题。在此基础上,运用PSNR、SSIM等图像评价方法及分片Wasserstein距离、Inception分数、流形距离度量、GAN-train和GAN-test等流形结构相似度评价指标对修复图像进行综合评价。实验结果表明,与CE、GL等算法相比,该算法获得的修复图像在主观感受和客观评价指标上均有明显提高。 相似文献
16.
在图像补全技术中,当图像丢失较多信息时,仅凭自身已有的信息很难补全图像.因此,文中使用条件生成对抗网络(CGAN)和多粒度认知相结合的方式研究图像的降噪和补全.首先借助云模型中高斯云变换算法提取无标签图像的多层语义信息,并根据不同层次的语义信息对图像进行不同粒度的分割,同时对已分割图像进行自动语义标注.然后将各粒层图像和其对应的语义信息分别作为CGAN的训练数据,得到图像生成对抗网络模型.最后依据此模型补全图像的缺失信息.实验表明,对于Caltech-UCSD Birds和Oxford-102flowers数据集的图像降噪和图像补全,文中算法取得较好效果. 相似文献
17.
生成对抗网络广泛应用于图像去雾领域,但通常需要较大的计算量和存储空间,从而限制了其在移动设备上的应用。针对该问题,提出一种基于条件生成对抗网络与知识蒸馏的去雾方法KD-GAN。将频率信息作为去雾的附加约束条件,通过傅里叶变换、拉普拉斯算子、高斯滤波器分别滤除原始图像的高频或低频信息,生成对应的高频和低频图像,并将融合得到的图像作为判别器的输入,以改进雾天图像的去雾效果。在此基础上,将原重型教师网络的知识迁移到具有较少权值参数的轻量型学生网络生成器中,并对轻量型学生网络进行训练,使其以更快的收敛速度达到与教师网络相近的去雾性能。在OTS和HSTS数据集上的实验结果验证了该方法的有效性,在学生网络的参数规模仅为教师网络1/2的条件下,学生网络在迭代第3×104次时,生成器输出图像的峰值信噪比和结构相似性已接近于教师网络迭代第5×104次时的数值,训练速度加快了约1.67倍。 相似文献
18.
19.
大气散射模型与有雾图像及对应清晰图像间的映射模型不适配,导致使用大气散射模型进行图像去雾处理时,图像存在颜色偏差、纹理细节粗糙等问题。基于模拟生物视觉系统的反馈原理,提出一种端到端的循环生成对抗网络算法,以解决误差累积造成的去雾图像低质的问题。通过生成模块将循环神经网络的隐藏状态作为反馈信息,以指导低级模糊特征信息生成更加丰富的高级特征。循环结构能够保证先前的网络层可以使用到后面网络层的高级特征信息,从而减少误差累积。此外,该算法能够根据判别模块的损失来评估重建图像的质量。实验结果表明,与GCANet算法相比,所提算法在SOTS测试集上的平均峰值信噪比和结构相似性,在室内分别提升3.41%和0.57%,在室外分别提升3.48%和1.39%,且在真实世界的数据集上进行图像去雾后,在视觉上避免了颜色失真和光晕问题。 相似文献