首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 125 毫秒
1.
目的研发一种高效、高质量氧化锆陶瓷超光滑表面加工技术。方法采用大抛光模磁流变抛光方式加工氧化锆陶瓷,利用自主研发的磁流变平面抛光装置,配制含有金刚石磨粒的磁流变抛光液,通过设计单因素实验,研究抛光时间、工作间隙、工件转速和抛光槽转速等主要工艺参数对氧化锆陶瓷平面磁流变加工性能的影响,并对材料去除率和表面粗糙度进行分析。结果在工作间隙为1.4 mm、工件转速为100 r/min、抛光槽转速为25 r/min的工艺条件下,表面粗糙度在达到饱和之前随时间的增加而降低。抛光30 min达到饱和,表面粗糙度Ra达到0.7 nm。继续延长抛光时间,表面粗糙度不再改善。氧化锆陶瓷的材料去除率随着工件转速和抛光槽转速的增加而增大,随着工作间隙的增大而减小。当工件转速为300 r/min时,材料去除率可以达到1.03 mg/min;抛光槽转速为25 r/min时,材料去除率可以达到0.80 mg/min;工作间隙为1.0 mm时,材料去除率最高可达0.77 mg/min。结论采用大抛光模磁流变抛光方法可以提高氧化锆陶瓷的材料去除率,同时获得纳米级表面粗糙度,实现氧化锆陶瓷的高效超光滑表面加工。  相似文献   

2.
曹霖霖  郭路广  袁巨龙  张翔  吕冰海  马毅  杭伟  赵萍 《表面技术》2021,50(11):339-345, 353
目的 对比分析不同晶向蓝宝石晶圆抛光结果,优化加工参数,探究晶体取向对抛光结果的影响规律.方法 选取A、C面蓝宝石晶片(50.8 mm)为研究对象,采用控制变量法,分别以加工载荷(9.87、14.81、19.75 kPa)和抛光盘转速(20、40、60、80 r/min)为变量,以表面粗糙度Ra和材料去除率MRR为评价指标,对两种晶体取向的蓝宝石晶片进行抛光加工试验,借助3D表面轮廓仪与扫描电子显微镜SEM,对加工前后蓝宝石晶片的表面形貌进行对比,并根据试验结果优化加工参数.结果 A、C面蓝宝石晶片的表面粗糙度与材料去除率,随时间均表现出先快速下降,然后逐渐变缓,最后趋于稳定的趋势.当选取转速60 r/min、载荷14.81 kPa的参数组合时,两种晶片获得目标最小粗糙度和最大材料去除率,最终得到A面Ra=24.874 nm,MRR=3.715 nm/min,C面Ra=2.763 nm,MRR=7.647 nm/min,C面材料去除率为A面的2.1~2.5倍.结论 蓝宝石晶体取向作用对材料加工结果存在显著影响,在相同的加工条件下,相较于A面蓝宝石,C面蓝宝石更容易获得纳米级的表面质量和更高的材料去除率,即C面更易加工.  相似文献   

3.
基于芬顿反应的磁流变化学复合抛光加工原理,对单晶SiC基片进行磁流变化学复合抛光试验,研究工艺参数对其抛光效果的影响。结果表明:随着金刚石磨粒粒径的增大,材料去除率先增大后减小,而表面粗糙度先减小后增大;随着磨粒质量分数的增大,材料去除率增大,而表面粗糙度先减小后增大;当羰基铁粉质量分数增大时,材料去除率增大,而表面粗糙度呈先减小后增大的趋势;随着氧化剂质量分数增大,材料去除率先增大后减小,而表面粗糙度呈现先减小后增大的趋势;加工间隙对材料去除率的影响较大,加工间隙为1.0 mm时,加工表面质量较好;随着工件转速和抛光盘转速增大,材料去除率均先增大后减小,表面粗糙度均先减小后增大。获得的优化的工艺参数为:磨粒粒径,1.0μm;磨粒质量分数,5%;羰基铁粉质量分数,25%;过氧化氢质量分数,5%;加工间隙,1.0 mm;工件转速,500 r/min;抛光盘转速,20 r/min。采用优化的工艺参数对表面粗糙度约为40.00 nm的单晶SiC进行加工,获得表面粗糙度为0.10 nm以下的光滑表面。  相似文献   

4.
目的 针对目前光滑无损伤光学曲面蓝宝石加工成本高、效率低的问题,对加工过程中磁流变抛光缎带进行流体仿真,进而优化抛光轮表面结构。方法 设计并提出3种表面结构柱形宽缎带磁流变抛光轮,介绍了磁流变抛光轮加工的基本原理,建立了磁流变抛光垫Bingham流体特性加工仿真模型,分析了3种抛光轮表面结构对工件表面磁通密度模、流场流速、流场压力分布的影响。同时对3种抛光轮的抛光效果进行了实验探究,探究了抛光轮表面结构对材料去除率和抛光后表面粗糙度的影响规律。结果 仿真结果表明,抛光轮表面槽型结构具有能增强磁通密度模、增大流体流速和流体压力的特性。实验结果表明,螺旋槽抛光轮的抛光效果最好,在螺旋抛光轮作用下,材料去除率为0.22 mg/h,抛光后蓝宝石表面粗糙度为1.08 nm。最终抛光轮近壁区总压力和速度的乘积结果与抛光轮实验去除率结果具有较好的一致性。结论 槽型结构可以提高抛光液在抛光轮表面的固着效果,影响工件表面流场运动状态,增强工件表面受到抛光垫的作用力。相较于光滑和横条槽抛光轮,螺旋槽抛光轮的抛光效率最高,表面粗糙度最低,可有效提高抛光效果。  相似文献   

5.
为提高集群磁流变平面抛光效率,在抛光盘表面增加微结构,以增强加工过程中的流体动压作用。使用平面抛光盘和表面加工有孔洞、V形槽、U形槽、矩形槽等不同微结构的抛光盘进行抛光试验及抛光压力特性试验,研究了加工间隙和工件转速对加工效果的影响。结果表明:抛光盘表面微结构对工件材料去除率影响较大,不同微结构盘材料去除率从大到小顺序为V形盘>U形盘>平面盘>孔洞盘>矩形盘,其中V形盘的材料去除率比平面盘高25%以上;所有抛光盘均能获得纳米级(Ra在8 nm以内)表面。当加工间隙为0.9~1.0 mm、工件转速为550 r/min时,加工效果较好。   相似文献   

6.
目的探究磁流变动压复合抛光基本原理及抛光力学特性。方法通过建立磁流变动压复合抛光过程中流体动压数学模型,分析抛光盘面结构化单元对抛光力学特性的影响规律,并优化其结构。搭建磁流变动压复合抛光测力系统,探究工作间隙、抛光盘转速、工件盘转速和凸轮转速对抛光力的影响规律,基于正交试验,优化抛光效果。结果抛光盘面结构化单元的楔形区利于流体动压效应的产生,且流体动压随楔形角和工作间隙的增大而减少,随楔形区宽度的增大而增大。结构化单元较为合理的几何参数为:楔形角3°~5°,工作间隙0.2~1.0 mm,楔形区宽度15~30 mm。法向力Fn随工作间隙的增大而减小,随工件盘转速的增大而增大,随抛光盘和凸轮转速的增大而先增大后减小;剪切力Ft随工作间隙的增大而减小,随工件盘、抛光盘和凸轮转速的增大均呈现先增大后减小的规律。通过正交试验获得优化工艺参数为:抛光盘转速60 r/min,工件盘转速600 r/min,凸轮转速150 r/min。在羰基铁粉(粒径3μm、质量分数35%)、SiC磨料(粒径3μm、质量分数5%)、工作间隙0.4 mm和磁感应强度0.1 T工况下,抛光2 in单晶硅基片4 h后,表面粗糙度Ra由20.11 nm降至2.36 nm,材料去除率为5.1 mg/h,初始大尺度纹理被显著去除。结论磁流变动压复合抛光通过在抛光盘面增设结构化单元,以引入流体动压效应,强化了抛光力学特性,并利用径向往复运动的动态磁场实现柔性抛光头的更新和整形,最终达到了提高抛光效率和质量的目的。  相似文献   

7.
半球谐振子的加工效率是影响半球谐振陀螺仪应用的主要因素。在环形磁流变抛光方式的基础上,提出平面化类比的简化加工抛光器并探索其加工性能。通过单因素探索试验和正交试验研究磁感应强度、抛光器转速、加工间隙、金刚石粒径等因素对抛光性能的影响。结果表明:使用环形磁流变抛光器抛光熔石英,当磁场磁感应强度较强,抛光器转速350 r/min,加工间隙0.6 mm,金刚石粒径为0.5~1.0 μm时,石英材料去除率为191.2 nm/min,表面粗糙度Ra值为3.31 nm,抛光效果良好。   相似文献   

8.
为提高氧化锆陶瓷工件的表面质量,采用磁性复合流体(由包含纳米级铁磁颗粒的磁流体与包含微米级羰基铁颗粒的磁流变液混合而成)对氧化锆陶瓷进行抛光,以达到降低材料表面粗糙度和减少表面与亚表面损伤的目的。利用田口方法设计3因素3水平正交试验,着重分析磁铁转速、加工间隙和抛光液磨粒粒径对表面粗糙度和材料去除率的影响规律,并采用方差分析法分析各因素对2个评价指标的影响权重。可达到最低表面粗糙度的工艺参数组合为:磁铁转速,300 r/min;加工间隙,0.5 mm;磨粒粒径,1.25μm。可达到最高材料去除率的工艺参数组合为:磁铁转速,400 r/min;加工间隙,0.5 mm;磨粒粒径,2.00μm。根据优化的工艺参数进行抛光,表面粗糙度最低可达4.5 nm,材料去除率最高可达0.117μm/min,优化效果显著。利用遗传算法优化BP神经网络建立抛光预测模型,预测误差为3.948 4%。  相似文献   

9.
磁流变抛光技术的工艺试验   总被引:1,自引:0,他引:1  
本文研究了利用自行配制的水基磁流变抛光液和抛光样机,进行了以抛光去除效率和表面粗糙度为考核指标的工艺实验,试验中所用工件为直径12mm的BK7玻璃零件,其初始表面粗糙度的均方根值为RMS1.41nm,经抛光后得到理想的表面粗糙度的均方根值为RMS0.61nm的玻璃工件,结果表明:随着磁流变抛光磁场强度的增加,抛光去除效率逐渐提高,但表面粗糙度的值随之降低;抛光盘转速的提高能促进抛光效率的提高,降低表面粗糙度值;抛光盘与工件间的间隙的减小有利于提高抛光效率但同时使表面粗糙度变差。  相似文献   

10.
目的 研发一种高精高效单晶碳化硅表面抛光技术。方法 采用电磁场励磁的大抛光模磁流变抛光方法加工单晶碳化硅,利用自制的电磁铁励磁装置与磁流变抛光装置,进行单因素实验,研究电流强度、工作间隙和抛光时间等工艺参数对单晶碳化硅磁流变抛光加工性能的影响,并检测加工面粗糙度及其变化率来分析抛光效果。结果 在工作间隙1.4 mm、电流强度12 A的工艺参数下,加工面粗糙度值随着加工时间的增加而降低,抛光60 min后,加工面粗糙度值Ra达到0.9 nm,变化率达到98.3%。加工面粗糙度值随通电电流的增大而减小,随着工作间隙的增大而增大。在工作间隙为1.0 mm、通电电流为16 A、加工时间为40 min的优化参数下抛光单晶碳化硅,可获得表面粗糙度Ra为0.6 nm的超光滑表面。结论 应用电磁场励磁的大抛光模盘式磁流变抛光方法加工单晶碳化硅材料,能够获得亚纳米级表面粗糙度。  相似文献   

11.
本文进行了氮化铝基片的集群磁流变抛光加工研究,分析了主要工艺参数的影响和加工表面形貌特征.实验结果表明:集群磁流变抛光加工氮化铝基片可以实现高效率超光滑抛光,原始表面Ra1.730 2μm抛光60 min后可以达到Ra0.037 8μm.选用碳化硅磨料,磨料质量浓度为0.05 g/mL,工件与抛光盘转速比为5.8左右,...  相似文献   

12.
目的 提高钛合金磁流变抛光的表面质量和抛光效率。方法 用Halbach磁场阵列强化磁场,通过载液盘与磁铁反向旋转来增强磁流变抛光效率,使抛光头拥有更强的恢复性与自锐性。通过仿真模拟和实际测量对比研究Halbach阵列与N-S阵列的磁场分布和磁场梯度。依照试验结果描述抛光剪切力、表面粗糙度与表面微观形貌随时间的变化规律。采用响应面法优化载液盘转速、磁铁转速和加工间距等3个工艺参数,建立剪切力和表面粗糙度的拟合方程数学预测模型,并对其中的不显著项进行优化。结果 在响应面交互作用分析中,工艺参数对剪切力的影响的大小顺序为加工间距、磁铁转速、载液盘转速;对表面粗糙度影响的大小顺序为载液盘转速、磁铁转速、加工间距。根据不同的需求,确定选定范围内的工艺参数组合,需要快速去除材料时,使剪切力趋于最大值的工艺参数组合为载液盘转速227 r/min,磁铁转速64 r/min,加工间距0.1 mm,通过20 min抛光后得到了表面粗糙度Sa为34.911 nm的光滑表面。抛光过程中,钛合金抛光所受剪切力τ为0.812 N。需要最优表面质量时,使表面粗糙度值趋于最小值的工艺参数组合为载液盘转速300 r/min,磁铁转速150 r/min,加工间距0.1 mm,通过20 min抛光后得到了表面粗糙度Sa为26.723 nm的光滑表面。抛光过程中,钛合金抛光所受剪切力τ为0.796 N。结论 Halbach阵列拥有较高的磁场强度和富有空间变化的磁感线,能够使磁流变液中的磁链呈现出更多的姿态变化。根据响应面法优化后的剪切力和表面粗糙度预测模型,预测结果与验证试验结果相差很小,预测模型的准确度与可信度较高。  相似文献   

13.
为提高单晶硅化学机械抛光(chemical mechanical polishing,CMP)的表面质量和抛光速度,通过响应面法优化CMP抛光压力、抛光盘转速和抛光液流量3个工艺参数,结果表明抛光压力、抛光盘转速、抛光液流量对材料去除率和抛光后表面粗糙度的影响依次减小。通过数学模型和试验验证获得最优的工艺参数为:抛光压力,48.3 kPa;抛光盘转速,70 r/min;抛光液流量,65 mL/min。在此工艺下,单晶硅CMP的材料去除率为1 058.2 nm/min,表面粗糙度为0.771 nm,其抛光速度和表面质量得到显著提高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号