共查询到20条相似文献,搜索用时 92 毫秒
1.
恶意加密流量的识别是网络安全管理的一项重要内容。然而,随着网络用户的增加,网络流量的数量和种类正以指数级增加,这给网络安全管理带来了新的挑战和威胁。传统的恶意加密流量识别方法依赖专家经验,且对恶意加密流量特征区分能力不强,不适用目前复杂网络的场景。本文提出了基于多头注意力的恶意加密流量检测方法,通过多头注意力,流量特征可以被映射到多个子空间并进行高阶流量特征的提取,通过一维卷积神经网络进一步提取数据包内部的空间特征。实验结果表明,该方法在CTU数据集上对正常、恶意加密流量的二分类取得了优异的检测效果。 相似文献
2.
3.
为实现互联网全面加密环境下的恶意加密流量精确检测,针对传统识别方法较依赖专家经验且对加密流量特征的区分能力不强等问题,提出一种基于层次时空特征与多头注意力(HST-MHSA)模型的端到端恶意加密流量识别方法.基于流量层次结构,结合长短时记忆网络和TextCNN有效整合加密流量的多尺度局部特征和双层全局特征,并引入多头注意力机制进一步增强关键特征的区分度.在公开数据集CICAndMal2017上的实验结果表明,HST-MHSA模型的流量识别F1值相较基准模型最高提升了16.77个百分点,漏报率比HAST-Ⅱ和HABBiLSTM模型分别降低了3.19和2.18个百分点,说明其对恶意加密流量具有更强的表征和识别能力. 相似文献
4.
为实现互联网全面加密环境下的恶意加密流量精确检测,针对传统识别方法较依赖专家经验且对加密流量特征的区分能力不强等问题,提出一种基于层次时空特征与多头注意力(HST-MHSA)模型的端到端恶意加密流量识别方法.基于流量层次结构,结合长短时记忆网络和TextCNN有效整合加密流量的多尺度局部特征和双层全局特征,并引入多头注意力机制进一步增强关键特征的区分度.在公开数据集CICAndMal2017上的实验结果表明,HST-MHSA模型的流量识别F1值相较基准模型最高提升了16.77个百分点,漏报率比HAST-Ⅱ和HABBiLSTM模型分别降低了3.19和2.18个百分点,说明其对恶意加密流量具有更强的表征和识别能力. 相似文献
5.
6.
在互联网加密化背景下,传统恶意流量检测方法在加密流量上的特征区分度较差,为更好地从加密流量中检测出恶意流量,设计一个融合一维Inception-ViT的恶意加密流量检测模型。基于流量数据的时序性特点,通过一维Inception结构对GoogLeNet中的Inception结构进行改进,使用适用于序列数据的一维卷积替换二维卷积,并添加池化操作去除一些冗余信息的干扰。同时,融合ViT模型,将经过一维Inception结构处理后的数据输入到ViT模型中,利用多头注意力突出重要特征,增强特征区分度以提升模型检测结果。为验证一维Inception-ViT模型各模块的有效性,与6种变体模型进行对比,实验结果表明,一维Inception-ViT模型性能最好,平均召回率和平均F1值指标分别达到了99.42%和99.39%。此外,与其他8种现有模型进行比较,一维Inception-ViT模型具有更好的检测效果,同时在恶意加密流量Neris和Virut细粒度分类上,与性能最好的基准模型相比,一维Inception-ViT模型能够有效减少样本检测混淆,可更准确地对恶意加密流量进行识别。 相似文献
7.
摘 要:随着网络技术的飞速发展,各种各样的应用以及网络中的异常流量对网络安全和QoS不断带来巨大的威胁。因此,通过有效的技术手段,管理和控制网络中的各种业务流量,是当前网络运营中面临的主要挑战之一。传统的流量分类以及入侵检测技术依赖于复杂的特征提取甚至用户的隐私信息。由于互联网网络带宽的不断提高以及应用层协议越来越复杂,加密技术的不断发展,以及用户隐私问题越来越受重视等,现有的技术已经很难适应当今网络技术和应用的发展需求。近年来深度学习的广泛应用为流量分类领域提供了新的思路,在此基础上,我们利用卷积神经网络(Convolutional Neural Networks, CNN)、长短时记忆(Long Short Term Memory, LSTM)和堆栈自编码(Stacked Auto Encoder, SAE)三种深度学习算法构建了一个能够对网络特征进行自主选择的流量分类架构,并且无需依赖用户的隐私信息。实验结果表明,该流量分类架构与现有基于传统机器学习的流量分类方法相比,其分类精度和F1_Score分别有13.8%和14.3%的改善,而且对存储资源的需求也大大降低。 相似文献
8.
随着网络的普及和依赖程度的不断增加,恶意流量的泛滥已经成为网络安全领域的严重挑战。在这个数字时代,网络攻击者不断寻找新的方式来侵入系统、窃取数据和破坏网络服务。开发更有效的入侵检测系统,及时发现并应对恶意流量,可以应对网络攻击的持续威胁,极大地减少网络攻击带来的损失。然而现有的恶意流量分类方法存在一些限制,其中之一是过度依赖对数据特征的选择。为了提高恶意流量分类的效果,提出了一种创新的方法,即基于超图神经网络的恶意流量分类模型。这一模型的核心思想是将流量数据表示为超图结构,并利用超图神经网络(HGNN,hypergraph neural network)来捕获流量的空间特征。HGNN能够更全面地考虑流量数据之间的关系,从而更准确地表征恶意流量的特征。此外,为了处理流量数据的时间特征,引入了循环神经网络(RNN,recurrent neural network),进一步提高了分类模型的性能。最终,提取的时空特征被用于进行恶意流量分类,从而帮助检测网络中的潜在威胁。通过一系列消融实验,验证了HGNN+RNN模型的有效性,证明其能够高效提取流量的时空特征,从而改善了恶意流量的分类性能。在3个... 相似文献
9.
情感分类对推荐系统、自动问答、阅读理解等下游应用具有重要应用价值,是自然语言处理领域的重要研究方向。情感分类任务直接依赖于上下文,包括全局和局部信息,而现有的神经网络模型无法同时捕获上下文局部信息和全局信息。文中针对单标记和多标记情感分类任务,提出一种循环卷积注意力模型(LSTM-CNN-ATT,LCA)。该模型利用注意力机制融合卷积神经网络(Convolutional Neural Network,CNN)的局部信息提取能力和循环神经网络(Recurrent Neural Network,RNN)的全局信息提取能力,包括词嵌入层、上下文表示层、卷积层和注意力层。对于多标记情感分类任务,在注意力层上附加主题信息,进一步指导多标记情感倾向的精确提取。在两个单标记数据集上的F1指标达到82.1%,与前沿单标记模型相当;在两个多标记数据集上,小数据集实验结果接近基准模型,大数据集上的F1指标达到78.38%,超过前沿模型,表明LCA模型具有较高的稳定性和较强的通用性。 相似文献
10.
针对当前网络中加密流量的快速分类和准确识别的问题,提出了一种新的数据流特征提取方法.依据序列型数据特点和SSL握手协议规律,采用了端到端的一维卷积神经网络模型,并利用五元组来标记数据流;通过对数据流表示方式、数据包个数和特征字节长度的选择,更准确地定位了样本分类的关键字段位置,去除了对样本分类影响较小的特征,从而把原始... 相似文献
11.
环境的日益恶化导致癌症的发病率不断升高,2018年全球乳腺癌的发病率在所有癌症中已经位居首位。乳腺X线摄影价格实惠且易于操作,目前被认作是最好的乳腺癌筛查方法,也是早期发现乳腺癌最有效的方法。针对乳腺X线摄影不容易分辨、特征不明显等特点,提出了基于RNN+CNN的注意力记忆网络对其进行分类。注意力记忆网络包含注意力记忆模块和卷积残差模块。注意力记忆模块中,注意力模块提取乳腺X线摄影的特征,记忆模块在RNN网络加入注意力权重来模拟人对所提取关键信息的重点突出;卷积残差模块使用CNN对图像进行分类。该方法创新之处在于:提出注意力记忆网络用于乳腺X线摄影图像分类;所设计网络在RNN+CNN结构上引入注意力权重,提取图像关键信息以增强特征描述。在乳腺X线摄影INbreast数据集上的实验结果显示,注意力记忆网络的运行时间比预训练的Inceptionv2、ResNet50、VGG16网络少50%以上,同时达到更高的分类准确率。 相似文献
12.
现有加密恶意流量检测方法需要利用大量准确标记的样本进行训练,以达到较好的检测效果。但在实际网络环境中,加密流量数据由于其内容不可见而难以进行正确标记。针对上述问题,提出了一种基于迁移学习的加密恶意流量检测方法,首次将基于ImageNet数据集预训练的模型Efficientnet-B0,迁移到加密流量数据集上,保留其卷积层结构和参数,对全连接层进行替换和再训练,利用迁移学习的思想实现小样本条件下的高性能检测。该方法利用端到端的框架设计,能够直接从原始流量数据中提取特征并进行检测和细粒度分类,避免了繁杂的手动特征提取过程。实验结果表明,该方法对正常、恶意流量的二分类准确率能够达到99.87%,加密恶意流量细粒度分类准确率可达到98.88%,并且在训练集中各类流量样本数量减少到100条时,也能够达到96.35%的细粒度分类准确率。 相似文献
13.
随着深度学习技术的快速发展,许多研究者尝试利用深度学习来解决文本分类问题,特别是在卷积神经网络和循环神经网络方面,出现了许多新颖且有效的分类方法。对基于深度神经网络的文本分类问题进行分析,介绍卷积神经网络、循环神经网络、注意力机制等方法在文本分类中的应用和发展,分析多种典型分类方法的特点和性能,从准确率和运行时间方面对基础网络结构进行比较,表明深度神经网络较传统机器学习方法在用于文本分类时更具优势,其中卷积神经网络具有优秀的分类性能和泛化能力。在此基础上,指出当前深度文本分类模型存在的不足,并对未来的研究方向进行展望。 相似文献
14.
近年来,随着网络加密技术的普及,使用网络加密技术的恶意攻击事件也在逐年增长,依赖于数据包内容的传统检测方法如今已经无法有效地应对隐藏在加密流量中的恶意软件攻击.为了能够应对不同协议下的加密恶意流量检测,提出了基于ProfileHMM的加密恶意流量检测算法.该方法利用生物信息学上的基因序列比对分析,通过匹配关键基因子序列,实现识别加密攻击流量的能力.通过使用开源数据集在不同条件下进行实验,结果表明了算法的有效性.此外,设计了两种规避检测的方法,通过实验验证了算法具有较好的抗规避检测的能力.与已有研究相比,该工作具有应用场景广泛以及检测准确率较高的特点,为基于加密流量的恶意软件检测研究领域提供了一种较为有效的解决方案. 相似文献
15.
随着加密技术的全面应用, 越来越多的恶意软件同样采用加密的方式隐藏自身的网络活动, 导致基于规则和特征的传统方法无法满足准确性和普适性的要求. 针对上述问题, 提出一种层次特征融合和注意力的恶意加密流量识别方法. 算法具备层次结构, 依次提取数据包的特征和会话流的特征, 前一阶段设计全局混合池化方法进行特征融合; 后一阶段使用注意力机制提高BiLSTM网络分析序列关系的能力. 最终, 实验采用CIC-AndMal 2017数据集进行验证, 结果表明: 模型设计合理, 相比TextCNN模型和HST-MHSA模型, 漏报率分别降低5.8%和2.6%, 加权F1值分别提高4.7%和3.5%, 在恶意加密流量识别和分类方面体现良好的优化效果. 相似文献
16.
方面级别文本情感分析旨在分析文本中不同方面所对应的情感趋向。传统基于神经网络的深度学习模型在文本情感分析的过程中,大多直接使用注意力机制而忽略了句法关系的重要性,即不能充分利用方面节点的上下文语义信息,导致情感趋向预测效果不佳。针对该问题,设计一种融合句法信息的图注意力神经网络模型,并将其应用于文本情感分析任务。利用预训练模型BERT进行词嵌入得到初始词向量,将初始词向量输入双向门控循环神经网络以增强特征向量与上下文信息之间的融合,防止重要上下文语义信息丢失。通过融合句法信息的图注意力网络加强不同方面节点之间的交互,从而提升模型的特征学习能力。在SemEval-2014数据集上的实验结果表明,该模型能够充分利用句法信息进行情感分析,其准确率较LSTM及其变种模型至少提升3%,对Restaurant评论进行情感分类预测时准确率高达83.3%。 相似文献
17.
入侵检测系统(IDS)在发现网络异常和攻击方面发挥着重要作用,但传统IDS误报率较高,不能准确分析和识别异常流量。目前,深度学习技术被广泛应用于网络流量异常检测,但仅仅采用简单的深度神经网络(DNN)模型难以有效提取流量数据中的重要特征。针对上述问题,提出一种基于堆叠卷积注意力的DNN网络流量异常检测模型。通过堆叠多个以残差模块连接的注意力模块增加网络模型深度,同时在注意力模块中引入卷积神经网络、池化层、批归一化层和激活函数层,防止模型过拟合并提升模型性能,最后在DNN模型中得到输出向量。基于NSL-KDD数据集对模型性能进行评估,将数据集预处理生成二进制特征,采用多分类、二分类方式验证网络流量异常检测效果。实验结果表明,该模型性能优于KNN、SVM等机器学习模型和ANN、AlertNet等深度学习模型,其在多分类任务中识别准确率为0.807 6,较对比模型提高0.034 0~0.097 5,在二分类任务中准确率和F1分数为0.860 0和0.863 8,较对比模型提高0.013 0~0.098 8和0.030 6~0.112 8。 相似文献
18.
传统事件触发词抽取方法在特征提取过程中对自然语言处理工具产生过度依赖的方法,耗费大量人力,容易出现错误传播和数据稀疏性等问题。为此,提出采用CNN-BiGRU模型进行事件触发词抽取的方法。将词向量和位置向量进行拼接作为输入,提取词级别特征和句子全局特征,提高触发词抽取效果,并通过CNN提取词汇级别特征,利用BiGRU获取文本上下文语义信息。在ACE2005英文语料库和中文突发事件语料库CEC上的实验结果表明,该模型事件触发词识别F1值分别达到74.9%和79.29%,有效提升事件触发词的抽取性能。 相似文献
19.
文本中的词并非都具有相似的情感倾向和强度,较好地编码上下文并从中提取关键信息对于情感分类任务而言非常重要。为此,提出一种基于情感评分的分层注意力网络框架,以对文本情感进行有效分类。利用双向循环神经网络编码器分别对词向量和句向量进行编码,并通过注意力机制加权求和以获得文档的最终表示。设计辅助网络对文本的词、句进行情感评分,利用该评分调整注意力权重分布。在探究文本的情感信息对分类性能的影响后,通过辅助网络进一步促使模型关注情感色彩强烈的信息。在4个常用情感分类数据集上的实验结果表明,该框架能够关注文本中的情感表达并获得较高的分类准确率。 相似文献
20.
传统的自注意力机制可以在保留原始特征的基础上突出文本的关键特征,得到更准确的文本特征向量表示,但忽视了输入序列中各位置的文本向量对输出结果的贡献度不同,导致在权重分配上存在偏离实际的情况,而双向门控循环单元(BiGRU)网络在对全局信息的捕捉上具有优势,但未考虑到文本间存在的局部依赖关系。针对上述问题,提出一种基于改进自注意力机制的BiGRU和多通道卷积神经网络(CNN)文本分类模型SAttBiGRU-MCNN。通过BiGRU对文本序列的全局信息进行捕捉,得到文本的上下文语义信息,利用优化的多通道CNN提取局部特征,弥补BiGRU忽视局部特征的不足,在此基础上对传统的自注意力机制进行改进,引入位置权重参数,根据文本向量训练的位置,对计算得到的自注意力权重概率值进行重新分配,并采用softmax得到样本标签的分类结果。在两个标准数据集上的实验结果表明,该模型准确率分别达到98.95%和88.1%,相比FastText、CNN、RCNN等分类模型,最高提升了8.99、7.31个百分点,同时精确率、召回率和F1值都有较好表现,取得了更好的文本分类效果。 相似文献