共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
初始中心优化的K—Means聚类算法 总被引:22,自引:1,他引:22
1.引言聚类分析(clustering)是人工智能研究的重要领域。聚类方法被广泛研究并应用于机器学习、统计分析、模式识别以及数据库数据挖掘与知识发现等不同的领域。各种聚类方法中,基于目标函数的K-Means聚类方法应用极为广泛,根据聚类结果的表达方式又可分为硬K-Means(HCM)算法、模糊K-Means算法(FCM)和概率K-Means算法(PCM)。各种K-Means算法都以确定的目标函数来测度聚类的效果,最佳的聚类效果对应于目标函数的极值点。由于目标函数局部极小值点的存在以及算法的贪心性,导致聚类结果对初始中心敏感,往往达不到全局最优。 相似文献
3.
基于核的自适应K—Medoid聚类 总被引:1,自引:1,他引:1
针对K-Medoid算法不能有效聚类大数据集和高维数据的弱点,将核学习方法引入到K-Medoid算法,提出了基于核的自适应K-Medoid算法.该算法利用核函数将输入空间样本映射到一个高维的特征空间,在这个核空间中进行K-Medoid聚类,在聚类过程中,数据可以自适应地加入到最适合它的簇当中,并且聚类结果与初始k个中心点的选取无关,该算法可以完成对大数据集和高维数据的聚类.实验结果表明,与K-Medoid算法相比,该算法具有较高的聚类准确率. 相似文献
4.
对教学反思内容的准确评估是教师基于教学反思过程提升其专业能力的重要保障。基于改进的K-Means算法对相同主题的教学反思文本进行聚类,通过给定初始聚类中心K的取值范围使其可以在给定范围内自动增加,在聚类过程中加入相似度阈值以限定文本间相似度的取值范围,实现对教学反思文本的分类和对自我反思文本的定位。实验结果表明改进的K—Means算法在反思文本聚类的准确率和稳定性方面比传统算法有所提高,且能根据教学反思内容准确地进行自动分类。 相似文献
5.
一般说来,离群点是远离其他数据点的数据,但很可能包含着极其重要的信息.提出了一种新的离群模糊核聚类算法来发现样本集中的离群点.通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,在经典的FCM模糊聚类算法的基础上得到了一个特征空间内的全新的聚类目标函数,通过对目标函数的优化,最终得到了各个数据的权值,根据权值的大小标识出样本集中的离群点.仿真实验的结果表明了该离群模糊核聚类算法的可行性和有效性. 相似文献
6.
基于核方法可在高维特征空间中完成数据聚类,但缺乏对原输入空间聚类中心及结果的直观刻画.提出一种核自组织映射竞争聚类算法.该算法是利用核的特征,导出SOM算法的获胜神经元及权重更新规则,而竞争学习机制依然保持在原输入空间中,这样既解决了当输入样本分布结构呈高度非线性时,其分类能力下降的问题,而且解决了Donald[1]算法导致的特征空间中的获胜神经元在原始输入空间中的原像不存在,而无法对聚类结果利用可视化技术进行解释的问题.实验结果表明,提出的核自组织映射竞争聚类算法在某些数据集中可以获得比SOM算法更好的结果. 相似文献
7.
为解决经典模糊聚类算法对噪声数据敏感、样本分布不平衡和高维数据集聚类效果不理想的问题。针对此不足,可以通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,从而在经典模糊聚类算法的基础上得到特征空间内的全新的目标函数。在基于核函数的模糊聚类算法中,核参数的选择是至关重要的。因此,提出了一个简单有效地决定核参数的方法。理论分析和实验结果表明,相对于其它经典模糊聚类算法,新算法具有更好的健壮性和聚类效果。 相似文献
8.
传统的低秩表示模型LRR对高维数据聚类精确度低,针对这一情况提出一种基于拉普拉斯正则化双曲正切函数低秩子空间聚类算法(LRHT-LRSC).该算法利用双曲正切函数代替核范数以便更紧凑地逼近秩函数,并利用拉普拉斯正则项刻画数据本身的几何结构,提高了数据聚类的准确率;然后构建数据样本的系数矩阵和相似矩阵;最后利用谱聚类方法得到最终的聚类结果.在合成数据集、真实数据集ExtendedYaleB和Hopkins155上的对比实验结果表明,LRHT-LRSC能够提高聚类的准确率和鲁棒性. 相似文献
9.
动态权值混合C-均值模糊核聚类算法* 总被引:1,自引:1,他引:1
PCM算法存在聚类重叠的缺陷,PFCM算法同时利用隶属度与典型值把数据样本划分到不同的类中,提高了算法的抗噪能力,但PFCM算法对样本分布不均衡的聚类效果并不十分理想。针对此不足,可以通过Mercer核把原来的数据空间映射到特征空间,并为特征空间的每个向量分配一个动态权值,从而得到特征空间内的目标函数。理论分析和实验结果表明,相对于其他经典模糊聚类算法,新算法具有更好的健壮性和聚类效果。 相似文献
10.
基于K-means的文本聚类算法① 总被引:4,自引:0,他引:4
针对K—means算法容易收敛到局部最优以及对初值的依赖性,基于多次采样一次预聚类搜索初始聚类中心的思想,提出了一种改进的K—means文本聚类方法。实验结果表明,改进的算法较原算法在准确率上有较大提高,并且具有更好的稳定性。 相似文献
11.
多核学习方法是一类重要的核学习方法,但大多数多核学习方法存在如下问题:多核学习方法中的基核函数大多选择传统的具有浅层结构的核函数,在处理数据规模大且分布不平坦的问题时表示能力较弱;现有的多核学习方法的泛化误差收敛率大多为 ,收敛速度较慢。为此,提出了一种基于神经正切核(NTK)的多核学习方法。首先,将具有深层次结构的NTK作为多核学习方法的基核函数,从而增强多核学习方法的表示能力。然后,根据主特征值比例度量证明了一种收敛速率可达 的泛化误差界;在此基础上,结合核对齐度量设计了一种全新的多核学习算法。最后,在多个数据集上进行了实验,实验结果表明,相比Adaboost和K近邻(KNN)等分类算法,新提出的多核学习算法具有更高的准确率和更好的表示能力,也验证了所提方法的可行性与有效性。 相似文献
12.
13.
采用K—Means聚类算法和神经网络算法,对药物的使用进行建模.通过模型可得到不同临床特征病人更适合服用何种药物的建议结果,正确率高达94.7%,实现用药的合理化。 相似文献
14.
为了提高分类型数据集聚类的准确性和对广泛数据集聚类的适应性,引入3种核函数,再利用基于山方法的核K-means作分类型的数据聚类,核函数把分类型数据映射到高维特征空间,从而给缺乏测度的分类型数据引入了数值型数据的测度.改进后用多个公开数据集对这些方法进行了实验评测,结果显示这些方法对分类型数据的聚类是有效的. 相似文献
15.
基于核的K-均值聚类 总被引:17,自引:0,他引:17
将核学习方法的思想应用于K-均值聚类中,提出了一种核K-均值聚类算法,算法的主要思想是:首先将原空间中待聚类的样本经过一个非线性映射,映射到一个高维的核空间中,突出各类样本之间的特征差异,然后在这个核空间中进行K-均值聚类。同时还将一种新的核函数应用于核K-均值聚类中以提高算法的速度。为了验证算法的有效性,分别利用人工和实际数据进行K-均值聚类和核K-均值聚类,实验结果显示对于一些特殊的类分布数据,核K-均值聚类比K-均值聚类具有更好的聚类效果。 相似文献
16.
17.
18.
提出一种融合化学反应优化与K均值的文本聚类算法.结合K均值聚类的局部快速开发寻优能力和化学反应优化的全局勘探能力,以K均值聚类解集合作为化学反应优化的初始分子结构群,通过引入单分子碰撞、单分子分解、分子间碰撞和分子间合成4种化学反应操作,增加种群分子多样性;利用融合余弦相似度和欧氏距离的适应度函数评估分子优劣,在扩展搜... 相似文献
19.
Dat Tran等提出的模糊熵聚类算法FEC是模糊C均值聚类算法FCM的一种改进,FEC在FCM的基础上引入熵的概念,对隶属度值分布方面进行算法的优化,但FCM与FEC二者在非线性可分数据处理时表现并不理想。本文提出一种新的基于核的模糊熵聚类算法KFEC,结合模糊熵聚类算法和核聚类算法的优点来增强聚类效果。对比实验表明KFEC能够处理非线性可分的数据的聚类问题,在一定程度上提高了聚类的质量。 相似文献
20.
动态加权模糊核聚类算法 总被引:2,自引:0,他引:2
为了克服噪声特征向量对聚类的影响,充分考虑各特征向量对聚类结果的贡献度的不同,运用mercer核将待聚类的数据映射到高维空间,提出了一种新的动态加权模糊核聚类算法.该算法运用动态加权,自动消弱噪声特征向量在分类中的作用,在对数据没有任何先验信息的情况下,不仅能够准确划分线性数据,而且能够做到非线性划分非团状数据.仿真和实际数据分类结果表明,数据中的噪声对分类结果影响较小,该算法具有很高的实用性. 相似文献