首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 265 毫秒
1.
为了探究不同对撞中心下与紧聚焦圆偏振高斯激光对撞的单个运动电子的3维轨迹和空间辐射特性, 基于激光与电子相互作用及非线性汤姆逊散射的理论框架, 建立模型进行了数值模拟, 并对数值结果进行了可视化分析。结果表明, 电子运动轨迹振幅在λ=0处达到0.151752λ001μm)的峰值, 而在-λ0处达到0.151662λ0的谷值, 呈现非对称性; 电子的最大辐射角和辐射强度随对撞中心位置具有周期性变化的规律; 辐射脉冲产生的全时段中, 脉冲出现最大峰值的主峰和峰值略低的次峰现象。该研究结果为新一代X射线发生器的建设提供了理论基础。  相似文献   

2.
为了探究高能电子辐射与其初始位置间的关系, 依据拉格朗日方程构建了单个高能电子与高斯激光脉冲相互作用发生散射的模型, 并采用数值模拟的方法通过MATLAB获得了电子运动轨迹及散射光的空间辐射特性, 具体分析讨论了电子初始位置对空间能量辐射的影响。结果表明, 初始状态静止的高能电子经与线偏振紧聚焦强激光相互作用, 其在平面内沿+z方向先做振荡运动, 然后沿直线行进; 最大辐射能量及其辐射方向均受到电子初始位置的较大影响, 前者随电子初始位置朝z轴正向移动出现极大值, 而后者在方位角恒定的同时极角逐渐减小并最终稳定; 全空间最大辐射能量在电子初始位置位于(0, 0, -7λ0)(λ0为激光波长)、极角和方位角分别为23.5°和180°时取得。此结果说明通过合理设置电子的初始位置可以获得强度尽可能大的辐射。  相似文献   

3.
《电子世界》2018,(7):34-35
研究了紧聚焦的线偏振飞秒强激光脉冲剧烈加速初始静止的低能相对论电子的效应,发现通过调控激光脉冲宽度可以使电子在激光脉冲纵向有质动力下获GeV量级的能量增益,并进一步研究了被加速电子脱离激光束后的速度偏向角和能量增益受激光脉宽变化的影响,发现当激光脉宽在8λ_0到10λ_0之间时可以获得准直性好的高能电子束,当激光脉宽超过10λ_0时,电子能量增益变化不大且准直性不好。  相似文献   

4.
为了研究超短超强椭圆偏振激光初始相位对于高能电子辐射特性的影响, 采用了Lorentz方程与电子能量方程构造高能电子与强激光场的对撞模型的方法, 并使用MATLAB进行数值模拟, 获得了电子的运动轨迹以及激光场空间辐射的功率与能量分布的数据与图像, 对不同的激光初始相位所对应的3维空间辐射特性进行了研究。结果表明, 当激光脉冲撞击电子时, 电子产生辐射, 且辐射功率呈现出双峰形; 高能电子的辐射功率图像在初始相位为0°, 180°和360°时表现为对称型双峰, 而在其它相位下则呈现出非对称型双峰。该结论为超短超强椭圆偏振激光的初始相位3维反探测研究提供了一定的基础。  相似文献   

5.
为了探究在圆偏振激光脉冲中电子初始位置对其运动轨迹和空间角辐射的影响,根据非线性汤姆逊散射模型、能量方程以及拉格朗日方程推导出了高能电子的空间运动方程,并与MATLAB数值模拟的方法相结合,做出了高能电子空间运动轨迹图和空间角辐射模拟图。结果表明,电子在涡旋横向力的作用下在全空间运动的前部轨迹呈紧密分离螺旋状,而后部轨迹由空间间隔遥远的稀疏圆组成,随着电子初始位置的右移,空间角辐射达到最大值时,极角θ和方位角φ的值有不断减小的趋势,在z0=5λ0后趋于稳定,(θ,φ)=(23.5°,175.5°);激光脉冲中电子初始位置的改变对电子的运动轨迹和空间角辐射有较大影响。该结果为后续研究电子初始位置对高能电子辐射特性的影响奠定了基础。  相似文献   

6.
为了获得紧聚焦脉冲激光作用下电子的辐射特性,采用非线性Thomson散射理论和线偏振紧聚焦激光脉冲与单电子的相互作用模型,利用MATLAB完成数值模拟,获得了电子的运动特性、不同观测角度下的功率与能量分布,以及最大辐射方向上的功率与能量.结果表明,与平面波激光脉冲作用下的非线性Thomson散射现象相似而又不同,在紧聚...  相似文献   

7.
刘航  冯立强 《激光技术》2019,43(1):53-57
为了增强高次谐波光谱及阿秒脉冲的强度,采用数值求解薛定谔方程的方法,理论研究了H2+在抽运探测激光驱动下高次谐波辐射特点。结果表明,在抽运激光驱动下,H2+首先被激发到多光子共振电离区间,进而增大电离几率; 随后在探测激光驱动下,谐波辐射强度得到增强; 当采用不对称非均匀激光场时,谐波截止频率可以进一步延伸,并且谐波平台区只由单一谐波辐射能量峰贡献; 最后通过叠加傅里叶变换后的谐波可获得脉宽在32as的脉冲。该研究对单个阿秒脉冲的产生是有帮助的。  相似文献   

8.
冯立强  刘航  刘辉 《激光技术》2017,41(4):467-472
为了了解H2+分子辐射谐波的空间分布,采用数值求解非玻恩-奥本海默近似的薛定谔方程,进行了空间均匀和非均匀激光场下H2+分子谐波辐射的空间分布研究。结果表明,在空间均匀场下,正向H核辐射谐波强度高于负向H核;在空间非均匀场下,由于金属结构表面出现的等离子共振增强现象,谐波截止能量得到延伸;负向H核辐射谐波强度明显高于正向H核,随后通过电离几率、电子布局、电子波函数以及谐波辐射的时频分析可以给出H2+分子谐波空间分布的合理解释。通过叠加谐波谱上的谐波,可获得一个脉宽为36as的超短孤立阿秒脉冲。该研究对分子谐波的空间分布及阿秒脉冲的输出是有帮助的。  相似文献   

9.
建立了适合描述短脉冲激光泵浦类Li离子产生X射线激光的简化流体和原子动力学模型。短脉冲激光泵浦纤维靶产生等离子体的电子密度、电子温度、电离态分布等和驱动激光功率密度、脉宽及纤维靶半径相联系。研究了类Li铝离子4f-3d跃迁激光增益系数随时间的演化过程,以及峰值增益和泵浦激光功率、脉宽及纤维靶半径之间的关系。  相似文献   

10.
利用高能电子在强激光场中散射发出激光同步辐射,根据Lorentz方程与电子能量方程构建高能电子与强激光场的对撞模型,并通过MATLAB软件模拟高能电子在与强激光场对撞时电子运动的三维轨迹以及不同观测角度上同步辐射的脉宽和最大功率,进而分析不同观测角度对激光同步辐射特性的影响。模拟结果表明,观测角度由0°增大到360°期间,激光同步辐射的最大功率先减小后增大,而其脉宽先减小后增大,两者都于观测角为180°处左右呈现出一定程度的对称。且在0度或360度处获得的最大辐射功率取值最大,脉宽最小,能量最集中。  相似文献   

11.
We demonstrate a compact and efficient diode-end-pumped TEM00 laser with output power of 25.2 W for 52 W of incident pump power by use of a single YVO4 crystal with a Nd concentration of 0.3 at.%. In Q-switched operation 21-W of average power at a pulse repetition rate of 100 kHz and ~1.1-mT pulse energy at a pulse repetition rate of 10 kHz were produced. At 10 kHz, the pulse width is around 10 ns and the peak power is higher than 100 kW  相似文献   

12.
Picosecond pulse generation of blue light by frequency doubling of a GaAlAs laser diode is reported. High power pulse generation is realized by incorporating gain switching of a laser diode with a saturable absorber and frequency doubling in a proton-exchanged MgO:LiNbO3 waveguide. The laser diode with a longer saturable absorber can produce optical pulses with higher peak power and narrower pulse width. The spectral bandwidth of second-harmonic generation for the waveguide is evaluated at about 20 nm. This is wide enough to frequency-double all the multilongitudinal modes of the gain-switched laser diode. A blue light pulse of 7.88-mW maximum peak power and 28.7-ps pulsewidth is obtained for a 1.23-W peak pulse of the laser diode  相似文献   

13.
近年来,为解决传统介质谐振器天线(dielectric resonator antenna, DRA)体积庞大等问题,新颖的低剖面DRA如介质贴片天线和平面介质天线被提出并迅速成为研究热点.然而,现有的低剖面DRA设计要么平面尺寸较大(>0.5λ0×0.5λ0),要么带宽较窄(<10%),限制了它们的实际应用.文中提出了一种具有小型化平面尺寸的宽带低剖面DRA.本天线采用介质贴片设计,顶部为高介电常数的介质贴片,中间为低介电常数的介质基板,底部为缝隙馈电结构.缝隙馈电结构可激励起介质贴片谐振器的基模TE111和高次模TE131两种工作模式,这两种模式的场分布在贴片边缘部分存在基模场强较弱而高次模场强较强的显著区别.本设计巧妙地利用了该区域的模式场强区别,通过略微增加贴片边缘部分高度来显著影响高次模谐振频率而轻微影响基模谐振频率,从而将高次模TE131的谐振频率迅速下拉并与基模TE111的谐振频率靠近合并,在不增大介质贴片平面尺寸的前提条件下获得宽带工作效果.本天线的三维尺寸为0.35λ0×0.35λ0×0.08λ0 (λ0为中心频率处的空气中波长),线极化实物案例测试结果表...  相似文献   

14.
Ultraviolet picosecond pulses were generated by frequency doubling a AlGaAs-GaAs laser diode in a proton-exchanged waveguide fabricated in MgO:LiNbO3. The Cerenkov radiation scheme was used to phase-match the infrared pulse from a gain-switched laser diode, which operates in multilongitudinal modes. Pulses with a peak power of 1.35 mW and 19.3-ps width were obtained at 390 nm. This is a unique method for generating short ultraviolet pulses with laser diodes in a simple configuration  相似文献   

15.
The theoretical transmission limits imposed by the interaction of first- and second-order group velocity dispersion and intensity-dependent self-phase modulation (SPM) effects for a range of wavelengths around the zero dispersion wavelength (λ0) for fibers in which polarization dispersion is negligible are investigated. It is found that increasing the peak input power to 30 mW reduces the transmission distance for data rates greater than 50 Gb/s, if operating at wavelengths shorter than λ0. Operating at wavelengths longer than λ0 improves the performance due to the cancellation of first-order dispersion by self-phase modulation. For example, at 50 Gb/s and 30 mW peak input power, the maximum transmission distance is 255 and 162 km, if operating at wavelengths 1 nm longer or shorter than λ0, respectively. Above 100 Gb/s, higher-order dispersion limits the transmission distance even at wavelengths equal to, or longer than, λ0. Linear dispersion compensation using a grating-telescope combination can significantly improve system performance for wavelengths where first-order dispersion dominates  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号