首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 77 毫秒
1.
采用还原-磨选工艺对高镁低品位红土镍矿制备镍铁合金粉进行了研究。考察了还原温度、还原时间、原料粒度区间、还原剂用量、添加剂用量等因素对镍直收率的影响。研究结果表明, 合适的还原制度为: 原料粒度0.09~0.12 mm、还原剂用量3%、添加剂用量2.5%, 还原温度1 300 ℃, 还原时间3.0 h。还原产物经球磨、磁选后, 获得镍品位为7.0%以上的镍铁合金粉, 镍直收率87%以上, 实现了从高镁低品位红土镍矿中回收镍铁的目的。  相似文献   

2.
对萃取方法从硫化镍矿浸出液中萃取分离铜进行了试验研究。结果表明:选取N902作萃取剂,经过两级萃取,铜萃取率平均为98.65%,镍萃取率平均为0.44%;用硫酸反萃,铜反萃率平均为99.54%;铜的回收率较高,可达98.20%。  相似文献   

3.
硫化镍矿氧压浸出试验研究   总被引:3,自引:1,他引:2  
以陕西某地平均品位5.708%的硫化镍精矿为原料, 采用高温氧压直接浸出工艺, 制备粗氢氧化镍。研究了浸出时间、氧分压、添加剂用量、温度、液固比、酸度等因素对镍浸出率的影响。结果表明, 氧压浸出最佳工艺为: 浸出时间8 h、氧分压1.6 MPa、木质素磺酸钠加入量为矿量的3%、浸出温度150 ℃、液固比2∶1、酸度100 g/L, 此时镍浸出率平均达到96.32%。  相似文献   

4.
新疆某低品位铜镍矿选矿试验研究   总被引:6,自引:4,他引:2  
新疆某铜镍矿含铜0.26%,含镍0.39%,采用预先脱除滑石—铜镍混合浮选—铜镍分离的浮选工艺流程,获得了较好的选矿指标。混合精矿含铜5.62%、含镍8.18%、铜回收率76.16%、镍回收率75.75%,铜精矿含铜20.58%、铜回收率66.38%,镍精矿含镍10.46%、镍回收率73.80%。  相似文献   

5.
云南低品位铜镍矿选矿试验研究   总被引:4,自引:0,他引:4  
云南低品位铜镍矿中镍、铜品位分别为0.54%、0.38%,镍主要为紫硫镍矿,铜为黄铜矿.在磨矿细度为-200目80%,水玻璃、CMC用量各为200g/t,硫酸铜用量为400g/t,戊黄药100g/t,2#油30g/t,作用时间5min的较佳条件下,通过一粗一精两扫的浮选工艺,取得了较好的试验指标,混合精矿中镍铜的品位分别为4.14%、3.81%,回收率为73.9%、85.0%.  相似文献   

6.
难选低品位铜镍矿细菌浸出的研究   总被引:2,自引:0,他引:2  
孙凤芹 《矿冶》2000,9(2):54-59
阐述了难选低品位铜镍矿细菌浸出试验 ;考察了Ag+对该矿细菌浸出的催化作用 ,并初步讨论了其催化机理 ;依据多金属硫化矿细菌浸出机理提出了两段细菌浸出工艺 ,排除了镍对黄铜矿溶解的负面影响 ,使铜、镍浸出率分别达到 68 0 7%和 68 1 3%。  相似文献   

7.
新疆某低品位铜镍矿选矿试验研究   总被引:2,自引:0,他引:2  
针对新疆某低品位铜镍矿矿石性质的特点,采用1粗2扫2精铜镍混浮、1粗1扫铜镍分离、中矿顺序返回的闭路试验流程,铜镍混浮以CMC与水玻璃的组合为脉石矿物抑制剂、异丁基黄药为捕收剂、A8为辅助捕收剂,铜镍分离以活性炭为脱药剂、石灰与T12的组合为镍矿物抑制剂、Z-200为捕收剂,获得了铜品位为27.03%、铜回收率为67.79%、含镍0.93%的铜精矿,以及铜品位为3.79%、镍品位为5.59%、铜回收率29.14%、镍回收率70.82%的铜镍混合精矿。  相似文献   

8.
为有效回收铅冰铜和烟灰中的铜铅锌资源,采用浮选试验和硫酸氧压浸出方法,探讨了回收铜、锌的可行性。研究表明:浮选分离铅冰铜中铜铅较为困难,而铅冰铜单独氧压浸出和铅冰铜与烟灰混合浸出均能取得较好的铜锌浸出效果,且混合处理指标更优。适宜条件下,铅冰铜单独浸出时,铜、锌浸出率达到88.25%和95.46%;铅冰铜与烟灰混合浸出时,铜、锌浸出率达到94.40%和99.65%。浸出液多次循环浸出,铜锌浸出率都能维持在83%以上,浸出液循环后溶液中铜锌浓度能满足后续工序要求。  相似文献   

9.
以红土镍矿酸浸产生的废水为原料,采用氧化-中和水解法沉淀铁,氢氧化钙沉淀法沉镁制备无机填料,为红土镍矿酸浸废水中有价金属的回收利用提供依据。研究了沉铁过程中温度和反应终点pH值对沉铁率及镁损失率的影响,获得适宜的沉铁条件为:温度40 ℃、pH=4.0,此时沉铁率可达99.86%,镁损失率约为2%。同时研究了沉镁过程中反应时间、反应温度、搅拌速度、镁钙摩尔比对镁沉淀率和钙利用率的影响,结果表明:温度50 ℃、搅拌速度300 r/min、反应时间2 h、镁钙摩尔比1∶1.2时,沉镁率可达99.53%,钙利用率为96.46%。采用XRD和SEM分析了沉镁产物的组成和结构,表明其为[Mg(OH)2-CaSO4·2H2O]混合物,可用作无机填料。  相似文献   

10.
试验矿石含镍0.76%、铜0.16%、氧化镁25.12%。镍是一种重要战略资源,而试验矿样中含有大量含镁硅酸盐矿石,氧化镁是后续冶金环节主要有害物质,因此在浮选工艺中要设法降低其含量。进行了"铜镍易浮脉石等可浮流程"、"抑制易浮脉石浮铜镍流程"、"常规流程"的闭路试验。铜镍易浮脉石等可浮流程试验结果镍品位11.81%,镍回收率76.2%,氧化镁含量4.38%。镍精矿质量达到一级品质量要求。  相似文献   

11.
高钙型低品位铜矿酸性浸出动力学研究   总被引:1,自引:0,他引:1  
通过单因素实验及动力学分析研究了低品位氧化铜矿的浸出过程,考察了矿物粒度、浸出温度、硫酸浓度和液固比对浸出过程的影响。结果表明,适宜的浸出条件为: 矿物粒度-0.074 mm粒级占比85%、浸出温度60 ℃、浸出时间120 min、硫酸浓度2.5 mol/L、液固比4∶1,此时铜浸出率为96.23%; CaCO3的存在导致浸出过程硫酸消耗增加; 浸出过程可用未反应核收缩模型来描述,反应速率受固膜界面传质和扩散混合控制,浸出过程活化能为8.78 J/mol。  相似文献   

12.
高碱性低品位氧化铜矿搅拌浸出研究   总被引:2,自引:0,他引:2  
对湖南水口山含泥高碱性低品位氧化铜矿,开展了搅拌浸出实验。实验结果表明,在常规条件下,浸出率只有60%左右,加温搅拌浸出可达80%左右;同时得到了最佳浸出条件是:酸的浓度4%,浸出时间36 h,浸出温度30℃,颗粒直径为40目,液体的体积与固体的质量之比为6∶1。  相似文献   

13.
为了研究黄铁矿经高温焙烧制取硫酸后产生的铜品位为0.87%硫酸渣的铜浸出动力学规律,采用X射线衍射分析等方法分析了矿石的性质,研究了矿石粒度、初始酸浓度、液固比、搅拌速率、浸出温度和浸出时间等因素对硫酸渣矿样中铜浸出的影响,采用未反应收缩核模型对硫酸渣浸出过程进行动力学分析。结果表明,各因素对硫酸渣铜浸出的浸出率有较大影响;从浸出过程控制模型、浸出动力学方程、浸出反应表观活化能方面确定了硫酸渣浸出过程的主要控制步骤为内扩散过程控制,得出浸出反应的表观活化能Ea=19.96 kJ/mol。  相似文献   

14.
采用赤铁矿法脱除低品位氧化铜矿浸出液中的铁离子。结果表明,适宜的除铁工艺条件为: 反应温度180 ℃、初始硫酸浓度2 g/L、反应时间3 h、氧分压0.3 MPa、搅拌速度400 r/min,此时除铁率为95.2%,渣中铁、铜、硫含量分别为62.7%、0.14%、1.6%。  相似文献   

15.
黑铜渣氧压硫酸浸出脱铜脱砷实验研究   总被引:4,自引:3,他引:1  
在硫酸体系中通氧加压浸出黑铜渣,结果表明,在硫酸质量浓度180 g/L、浸出温度140 ℃、氧分压0.8 MPa、液固比8 mL/g、浸出时间3 h、搅拌速度600 r/min、黑铜渣粒径178 μm的较优工艺条件下,黑铜渣中Cu、As和Ni浸出率分别为97.59%、95.42%和98.37%,Sb、Bi浸出率分别仅为6.78%和2.31%,实现了黑铜渣中Cu、As、Ni的高效脱除,浸出渣中锑、铋、银等有价金属得到高度富集。  相似文献   

16.
研究了硫酸浸出转底炉高锌铅粉尘提取锌的工艺条件和参数。最佳浸出工艺条件为: 搅拌速度400 r/min, 硫酸浓度为1.0 mol/L, 浸出温度为25 ℃, 固液比为1∶8, 浸出时间为0.5 h。在此条件下, 锌的浸出率可达96%以上。采用针铁矿-氧化水解法除铁、过硫酸铵深度除铁锰、锌粉置换除杂的方法对浸出液净化处理, 得到高纯度硫酸锌溶液, 该溶液可直接电解制取锌或制取碱式碳酸锌和氧化锌。  相似文献   

17.
为了有效利用陕西某地含钒黏土矿,采用直接酸浸工艺提钒,考察了液固比、浸出温度、浸出时间、硫酸用量对直接酸浸提钒的影响,通过浸出反应动力学确定了反应模型.结果表明,在硫酸用量25%、浸出温度95℃、浸出时间10 h、液固比0.6时,钒浸出率为74.6%.该含钒黏土矿的钒浸出动力学符合收缩核模型,其表观活化能约为30.73...  相似文献   

18.
为了考察菱锰矿硫酸浸出液采用Na3PO4除铁的可行性,以及除铁所生成的FePO4滤渣用NaOH处理以回收PO43-的效果,对Mn2+、Fe2+浓度分别为18.04、5.20 g/L的模拟菱锰矿硫酸浸出液进行了Na3PO4除铁、PO3-4回收工艺条件试验。结果表明:在H2O2用量为理论量、溶液pH=1.8、Na3PO4用量为1.7倍理论量、搅拌时间为15 min情况下,Fe2+去除率达99.85%、Mn2+损失率仅为2.23%;FePO4滤渣用0.75倍理论量的NaOH处理,反应3 h时的PO3-4回收率达98.24%。因此,菱锰矿硫酸浸出液采用Na3PO4除铁不仅可行,而且因PO3-4可回收再利用,除铁工艺成本较低。  相似文献   

19.
研究了磁性晶种对硫酸铁溶液、硫酸铬溶液、电镀污泥和红土镍矿酸浸液中铁铬的去除效果,并探讨了磁性晶种除铁铬的机制。结果表明,在电镀污泥和红土镍矿酸浸液中,当pH值高于2.5和温度80 ℃以上时磁性晶种能有效去除铁铬离子。当铁铬共存时,磁性晶种表面生成的含铁水合物具有更强的静电引力,促进了磁性晶种对铬离子的去除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号