共查询到18条相似文献,搜索用时 62 毫秒
1.
针对高分辨率遥感图像中存在背景复杂、目标大小不一、类间具有相似性的问题,提出一种用于遥感图像语义分割的多特征注意力融合网络(Multi-feature Attention Fusion, MAFNet)。MAFNet基于编码和解码结构,在编码阶段,采用空间金字塔池化获取多尺度的上下文信息,同时融合特征通道之间的关联信息,提高特征图的语义表征能力;在解码阶段,基于注意力机制将高层特征与低层特征自适应地融合,逐级恢复目标的细节特征。在公开的数据集Potsdam和Vaihingen上设计了对比实验,PA值分别达到了89.6%和89.1%,验证了该方法的有效性。 相似文献
2.
快速获取遥感信息对图像语义分割方法在遥感影像解译应用发展具有重要的研究意义。随着卫星遥感影像记录的数据种类越来越多,特征信息越来越复杂,精确有效地提取遥感影像中的信息,成为图像语义分割方法解译遥感图像的关键。为了探索快速高效解译遥感影像的图像语义分割方法,对大量关于遥感影像的图像语义分割方法进行了总结。首先,综述了传统的图像语义分割方法,并将其划分为基于边缘检测的分割方法、基于区域的分割方法、基于阈值的分割方法和结合特定理论的分割方法,同时分析了传统图像语义分割方法的局限性。其次,详细阐述了基于深度学习的语义分割方法,并以每种方法的基本思想和技术特点作为划分标准,将其分为基于FCN的方法、基于编解码器的方法、基于空洞卷积的方法和基于注意力机制的方法四类,概述了每类方法中包含的子方法,并对比分析了这些方法的优缺点。然后,简单介绍了遥感图像语义分割常用数据集和性能评价指标,给出了经典网络模型在不同数据集上的实验结果,同时对不同模型的性能进行了评估。最后,分析了图像语义分割方法在高分辨率遥感图像解译上面临的挑战,并对未来的发展趋势进行了展望。 相似文献
3.
近年来随着深度学习技术的不断发展,涌现出各种基于深度学习的语义分割算法,然而绝大部分分割算法都无法实现推理速度和语义分割精度的兼得.针对此问题,提出一种多通道深度加权聚合网络(MCDWA_Net)的实时语义分割框架.\:该方法首先引入多通道思想,构建一种3通道语义表征模型,3通道结构分别用于提取图像的3类互补语义信息:低级语义通道输出图像中物体的边缘、颜色、结构等局部特征;辅助语义通道提取介于低级语义和高级语义的过渡信息,并实现对高级语义通道的多层反馈;高级语义通道获取图像中上下文逻辑关系及类别语义信息.\:之后,设计一种3类语义特征加权聚合模块,用于输出更完整的全局语义描述.\:最后,引入一种增强训练机制,实现训练阶段的特征增强,进而改善训练速度.\:实验结果表明,所提出方法在复杂场景中进行语义分割不仅有较快的推理速度,且有很高的分割精度,能够实现语义分割速度与精度的均衡. 相似文献
4.
5.
高质量的特征表示可以提高目标检测和其他计算机视觉任务的性能.现代目标检测器诉诸于通用的特征金字塔结构以丰富表示能力,但是他们忽略了对于不同方向的路径应当使用不同的融合操作,以满足其对信息流的不同需求.提出了分离式空间语义融合(separated spatial semantic fusion,SSSF),它在自上而下的路径中使用通道注意模块(channel attention block,CAB)来传递语义信息,在自下而上的路径中使用具有瓶颈结构的空间注意模块(spatial attention block,SAB)来通过较少的参数和较少的计算量(相比于直接利用不降维的空间注意模块)将精确的位置信号传递到顶层.SSSF十分有效,并且具有很强大的泛化能力:对于目标检测,它可以将AP提高1.3%以上,对于自上而下的路径进行语义分割的融合操作,它可以将普通加和版本的AP提高约0.8%,对于实例分割,所提方法能够在所有指标上提高实例分割的包围框AP和掩膜AP. 相似文献
6.
高分辨率遥感影像的空间分辨率高、地物信息丰富、复杂程度高、各类地物的大小尺寸不一,这为分割精度的提高带来了一定的难度.为提高遥感影像语义分割精度,解决U-Net模型在结合深层语义信息与浅层位置信息时受限的问题,文中提出了一种基于U-Net特征融合优化策略的遥感影像语义分割方法.该方法采用基于U-Net模型的编码器-译码... 相似文献
7.
轻量化卷积神经网络的出现促进了基于深度学习的语义分割技术在低功耗移动设备上的应用.然而,轻量化卷积神经网络一般不考虑融合特征之间的关系,常使用线性方式进行特征融合,网络分割精度有限.针对该问题,提出一种基于编码器-解码器架构的轻量化卷积注意力特征融合网络.在编码器中,基于MobileNetv2给出空洞MobileNet模块,以获得足够大的感受野,提升轻量化主干网络的表征能力;在解码器中,给出卷积注意力特征融合模块,通过学习特征平面通道、高度和宽度3个维度间的关系,获取不同特征平面之间的相对权重,并以此对特征平面进行加权融合,提升特征融合的效果.所提网络仅有0.68×106参数量,在未使用预训练模型、后处理和额外数据的情况下,使用NVIDIA 2080Ti显卡在城市道路场景数据集Cityscapes和CamVid上进行实验的结果表明,该网络的平均交并比分别达到了72.7%和67.9%,运行速度分别为86帧/s和105帧/s,在分割精度、网络规模与运行速度之间达到了较好的平衡. 相似文献
8.
针对医学超声影像中图像受斑点噪声干扰、细节信息丢失、目标边界模糊等问题,提出一种基于特征融合和注意力机制的超声影像分割网络,整体结构采用编码器-解码器网络结构。首先,使用编码器模块对图像进行上下文特征提取,提取全局特征信息;然后,设计多尺度特征提取模块,捕获更广泛的语义信息;最后,在解码器模块中加入双注意力机制,沿空间和通道两个维度细化特征信息,加强对超声心动图影像中左心室区域的关注,使模型对有噪声的输入图像具有鲁棒性。实验结果表明,所提出的网络在超声心动图心尖四腔心数据集上的实验分割结果的Dice系数达到93.11%,平均交并比(mIoU)为86.80%,较传统的U-Net卷积神经网络分别提升了3.06个百分点和3.95个百分点,有效获取了左心室区域细节信息和边界信息,取得了较好的分割结果。 相似文献
9.
遥感图像语义分割是指通过对遥感图像上每个像素分配语义标签并标注,从而形成分割图的过程,在国土资源规划、智慧城市等领域有着广泛的应用。高分辨率遥感图像存在目标大小尺度不一与阴影遮挡等问题,单一模态下对相似地物和阴影遮挡地物分割较为困难。针对上述问题,提出了将IRRG(infrared、red、green)图像与DSM(digital surface model)图像融合的遥感图像语义分割网络MMFNet。网络采用编码器-解码器的结构,编码层采用双输入流的方式同时提取IRRG图像的光谱特征和DSM图像的高度特征。解码器使用残差解码块(residual decoding block,RDB)提取融合后的特征,并使用密集连接的方式加强特征的传播和复用。提出复合空洞空间金字塔(complex atrous spatial pyramid pooling,CASPP)模块提取跳跃连接的多尺度特征。在国际摄影测量与遥感学会(international society for photogrammetry and remote sensing,ISPRS)提供的Vaihingen和Potsdam数据集上进行了实验,MMFNet分别取得了90.44%和90.70%的全局精确度,相比较与DeepLabV3+、OCRNet等通用分割网络和CEVO、UFMG_4等同数据集专用分割网络具有更高的分割精确度。 相似文献
10.
该文提出了一种基于深度学习框架的图像语义分割方法,通过使用由相对深度点对标注训练的网络模型,实现了基于彩色图像的深度图像预测,并将其与原彩色图像共同输入到包含带孔卷积的全卷积神经网络中。考虑到彩色图像与深度图像作为物体不同的属性表征,在特征图上用合并连接操
作而非传统的相加操作对其进行融合,为后续卷积层提供特征图输入时保持了两种表征的差异。在两个数据集上的实验结果表明,该法可以有效提升语义分割的性能。 相似文献
11.
12.
在图像语义分割中,利用卷积神经网络对图像信息进行特征提取时,针对卷积神经网络没有有效利用各层级间的特征信息而导致图像语义分割精度受损的问题,提出分级特征融合的图像语义分割方法.该方法利用卷积结构分级提取含有像素级的浅层低级特征和含有图像级的深层语义特征,进一步挖掘不同层级间的特征信息,充分获取浅层低级特征和深层语义特征... 相似文献
13.
为降低室外大规模点云场景中多类三维目标语义分割的计算复杂度,提出一种融合区块特征的语义分割方法。采用方形网格分割方法对三维点云进行区块划分、采样以及组合,求取简化的点云组合区块集,将其输入至区块特征提取和融合网络中从而获得每个区块的特征修正向量。设计点云区块全局特征修正网络,以残差的方式融合特征修正向量与原始点云全局特征,修正因分割造成的错误特征。在此基础上,将方形网格分割尺寸作为神经网络的参数引入反向传播过程中进行优化,从而建立高效的点云语义分割网络。实验结果表明,反向传播算法可以优化分割尺寸至最佳值附近,所提网络中的全局特征修正方法能够提高语义分割精度,该方法在Semantic3D数据集上的语义分割精度达到78.7%,较RandLA-Net方法提升1.3%,且在保证分割精度的前提下其点云预处理计算复杂度和网络计算时间明显降低,在处理点数为10万~100万的大规模点云时,点云语义分割速度较SPG、KPConv等方法提升2~4倍。 相似文献
14.
在图像的采集过程中,图像往往会带有一定的噪声信息,这些噪声信息会破坏图像的纹理结构,进而干扰语义分割任务.现有基于带噪图像的语义分割方法,大都是采取先去噪再分割的模型.然而,这种方式会导致在去噪任务中丢失语义信息,从而影响分割任务.为了解决该问题,提出了一种多尺度多阶段特征融合的带噪图像语义分割的方法,利用主干网络中各阶段的高级语义信息以及低级图像信息来强化目标轮廓语义信息.通过构建阶段性协同的分割去噪块,迭代协同分割和去噪任务,进而捕获更准确的语义特征.在PASCAL VOC 2012和Cityscapes数据集上进行了定量评估,实验结果表明,在不同方差的噪声干扰下,模型依旧取得了较好的分割结果. 相似文献
15.
针对目前室内场景语义分割网络无法很好融合图像的RGB信息和深度信息的问题,提出一种改进的室内场景语义分割网络.为使网络能够有选择性地融合图像的深度特征和RGB特征,引入注意力机制的思想,设计了特征融合模块.该模块能够根据深度特征图和RGB特征图的特点,学习性地调整网络参数,更有效地对深度特征和RGB特征进行融合;同时使... 相似文献
16.
眼球区域分割是医学超声图像处理和分析的关键步骤,由于临床设备采集的眼球超声图像具有噪声干扰、区域模糊、边缘灰度相似等缺点,从而导致现有的方法不能准确地分割出眼球区域,因此本文基于可变形卷积提出了一种语义嵌入的注意力机制的分割方法.首先使用可变形卷积替代传统的卷积,提高本文网络对眼球区域的表征能力;其次构建语义嵌入的注意... 相似文献
17.
高分辨率遥感图像语义分割在国土规划、地理监测、智慧城市等领域有着广泛的应用价值,但是现阶段研究中存在相似地物和精细地物分割不准确问题。为解决这一问题,提出了一种新型的多尺度语义分割网络MSSNet。它由编码层、解码层和输出层组成。为解决相似地物的分割问题,编码层使用深层网络ResNet101充分提取地物特征,并在解码层的解码器中加入残差块,提高基于像素点的分类能力。为解决精细结构地物的分割问题,解码层中的解码器加入了空洞空间金字塔池化结构提取多尺度地物特征,以便精确分割不同尺度的地物。为了强化语义分割能力,输出层合并了多个解码器的输出,为最终的预测提供了更多的信息。在两个公开数据集Vaihingen和Potsdam上进行了实验,分别取得了87%和87.3%的全局精确度,超过了大多数已发表的方法。实验结果表明,提出的MSSNet能够精确地分割相似地物和精细地物,并且具有训练过程简单和易于使用的优点,非常适合进行高分辨率遥感图像语义分割。 相似文献
18.
由于运动原因会造成活体心脏MRI图像中左心室心内膜与心肌边缘轮廓模糊,进而导致分割不准确以及分割精度较低,针对这些问题,本文提出一种基于光流场与语义特征融合的心脏4D Cine-MRI (magnetic resonance imaging)左心室心肌分割模型OSFNet.该模型包含了光流场计算和语义分割网络:将光流场计算得到的运动特征与图像语义特征进行融合,通过网络学习达到了最优的分割效果.模型采用编码器-解码器结构,本文提出的多感受野平均池化模块用于提取多尺度语义特征,减少了特征丢失;解码器部分使用了多路上采样方法和跳跃连接,保证了语义特征被有效还原.本文使用ACDC公开数据集对模型进行训练与测试,并分别与DenseNet和U-Net在左心室内膜分割、左心室内膜和心肌分割目标上进行对比.实验结果表明, OSFNet在Dice和HD等多个指标上取得了最佳效果. 相似文献