首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
目前,单幅图像超分辨率重建取得了很好的效果,然而大多数模型都是通过增加网络层数来达到好的效果,并没有去发掘各通道之间的相关性.针对上述问题,提出了一种基于通道注意力机制(CA)和深度可分离卷积(DSC)的图像超分辨率重建方法.整个模型采用多路径模式的全局和局部残差学习,首先利用浅层特征提取块来提取输入图像的特征;然后,...  相似文献   

2.
姚鲁  宋慧慧  张开华 《计算机应用》2005,40(10):3048-3053
目前用于图像超分辨率重建的通道注意力机制存在注意力预测破坏每个通道和其权重的直接对应关系以及仅仅只考虑一阶或二阶通道注意力而没有综合考虑优势互补的问题,因此提出一种混合阶通道注意力网络的单图像超分辨率重建算法。首先,该网络框架利用局部跨通道相互作用策略将之前一、二阶通道注意力模型采用的升降维改为核为k的一维卷积。这样不仅使得通道注意力预测更直接准确,而且得到的模型相比之前的通道注意力模型更简单;同时,采用改进一、二阶通道注意力模型以综合利用不同阶通道注意力的优势,提高网络判别能力。在基准数据集上的实验结果表明,和现有的超分辨率算法相比,所提算法重建图像的纹理细节和高频信息能得到更好的恢复,且在Set5和BSD100数据集上感知指数(PI)分别平均提高0.3和0.1。这表明此网络能更准确地预测通道注意力并综合利用了不同阶通道注意力,一定程度上提升了性能。  相似文献   

3.
姚鲁  宋慧慧  张开华 《计算机应用》2020,40(10):3048-3053
目前用于图像超分辨率重建的通道注意力机制存在注意力预测破坏每个通道和其权重的直接对应关系以及仅仅只考虑一阶或二阶通道注意力而没有综合考虑优势互补的问题,因此提出一种混合阶通道注意力网络的单图像超分辨率重建算法。首先,该网络框架利用局部跨通道相互作用策略将之前一、二阶通道注意力模型采用的升降维改为核为k的一维卷积。这样不仅使得通道注意力预测更直接准确,而且得到的模型相比之前的通道注意力模型更简单;同时,采用改进一、二阶通道注意力模型以综合利用不同阶通道注意力的优势,提高网络判别能力。在基准数据集上的实验结果表明,和现有的超分辨率算法相比,所提算法重建图像的纹理细节和高频信息能得到更好的恢复,且在Set5和BSD100数据集上感知指数(PI)分别平均提高0.3和0.1。这表明此网络能更准确地预测通道注意力并综合利用了不同阶通道注意力,一定程度上提升了性能。  相似文献   

4.
针对中间层通道特征相关性利用率低、低分辨率图像和高分辨率图像函数映射空间非线性的问题,提出了一种基于高效二阶注意力机制的对偶回归网络(ESADRNet)。该网络将重建任务分为两个回归网络:原始回归网络和对偶回归网络。原始回归网络采用FReLU为激活函数的下采样层对图像进行更高效的空间上下文特征提取;基于多级跳跃连接残差块(MLSCR)和高效二阶通道注意力模块(ESOCA)构成的多级跳跃连接残差注意力模块(MLSCRAG)、共享源跳跃连接(SSC)和亚像素卷积构建渐进式上采样网络,使网络专注于更具辨别性的特征表示,具有更强大的特征表达和特征相关学习能力;利用对偶回归网络约束映射空间,寻找最优重建函数。在Set5、Set14、BSD100和Urban109数据集上经过对比实验证明,该网络在客观定量指标和主观视觉方面均优于其他对比方法。  相似文献   

5.
针对现有图像超分辨率重建方法中高频图像信息不丰富的问题,提出一种基于反馈和注意机制的单图像重建生成对抗网络(GFSRGAN)。采用反馈网络作为生成器,通过反馈连接逐步生成高分辨率图像;提出一种具有注意机制的反馈块,其能在处理反馈流的同时,自适应地选择有用的特征信息;利用相对平均最小二乘GAN(Ra LSGAN)损失引导模型获得更真实的图像。实验结果表明,与现有基于GAN的超分辨方法相比,该方法重建出的图像纹理更加逼真自然。  相似文献   

6.
图像超分辨率重建旨在依据低分辨率图像重建出接近真实的高分辨率图像,现有基于卷积神经网络的图像超分辨率重建方法存在网络参数量大、重建速度慢等问题,从而限制其在内存资源小的终端设备上的应用。提出一种基于深度可分离卷积的轻量级图像超分辨率重建网络,利用深度可分离卷积提取图像的特征信息,减少网络的参数量,采用对比度感知通道注意力机制获取图像的对比度信息,并将其作为全局信息,同时对提取特征的不同通道权重进行重新分配,增强重建图像的细节纹理信息。在此基础上,采用亚像素卷积对图像特征进行上采样操作,提高整体重建图像质量。实验结果表明,当放大倍数为2、3和4时,该网络的参数量分别为140 000、147 000和152 000,重建时间为0.020 s、0.014 s和0.011 s,相比VDSR、RFDN、IDN等网络,在保证重建效果的前提下能够有效减少网络参数量。  相似文献   

7.
现有基于卷积神经网络的单图像超分辨率模型存在三个限制。理论上存在无限的HR图像,可以下采样到相同的LR图像,可能的函数空间非常大。因为现实世界潜在的下采样方法是未知的,使用特定方法配对的数据训练的模型在实际应用中泛化能力差,产生适应性问题。忽视残差分支的高频层次特征。针对上述问题,提出双重回归方案。除了学习从LR到HR图像的原始回归映射之外,额外学习一个对偶回归映射来估计下采样核并重建LR图像,形成一个闭环提供额外的监督,并在残差结构上引入了傅里叶变换,增强模型对高频信息的表达能力。相比其他先进模型以更少的参数重建HR图像,且拥有丰富的高频纹理细节。  相似文献   

8.
为解决现有医学图像超分辨率重建中存在的图像细节模糊、全局信息利用不充分等问题,提出一种基于空洞卷积与改进的混合注意力机制的医学图像超分辨率重建算法。首先,将深度可分离卷积与空洞卷积相结合,使用不同大小的感受野对图像进行不同尺度的特征提取,从而增强特征表达能力;其次,引入边缘通道注意力机制,在提取图像高频特征的同时融合边缘信息,从而提高模型的重建精度;再次,混合L1损失与感知损失函数作为整体损失函数,使重建后的图像效果更符合人类视觉感观。实验结果表明,在放大因子为3时,与基于卷积神经网络的图像超分辨率(SRCNN)算法、VDSR(Very Deep convolutional networks Super-Resolution)相比,所提算法的峰值信噪比(PSNR)平均提高了11.29%与7.85%;结构相似性(SSIM)平均提高了5.25%和2.44%。可见,所提算法能增强医学图像的效果与纹理特征,且对图像整体结构还原更加完整。  相似文献   

9.
陈一鸣  周登文 《自动化学报》2022,48(8):1950-1960
深度卷积神经网络显著提升了单图像超分辨率的性能. 通常, 网络越深, 性能越好. 然而加深网络往往会急剧增加参数量和计算负荷, 限制了在资源受限的移动设备上的应用. 提出一个基于轻量级自适应级联的注意力网络的单图像超分辨率方法. 特别地提出了局部像素级注意力模块, 给输入特征的每一个特征通道上的像素点都赋以不同的权值, 从而为重建高质量图像选取更精确的高频信息. 此外, 设计了自适应的级联残差连接, 可以自适应地结合网络产生的层次特征, 能够更好地进行特征重用. 最后, 为了充分利用网络产生的信息, 提出了多尺度全局自适应重建模块. 多尺度全局自适应重建模块使用不同大小的卷积核处理网络在不同深度处产生的信息, 提高了重建质量. 与当前最好的类似方法相比, 该方法的参数量更小, 客观和主观度量显著更好.  相似文献   

10.
目前超分辨率图像重建技术是计算机视觉领域的研究热点,随着深度学习的发展,基于深度学习的超分辨率图像重建技术已经取得了一定的研究成果.论文回顾了典型的超分辨率图像重建的深度网络模型,对超分辨率图像重建的深度学习算法和网络结构进行介绍,比较分析了不同模型的优缺点,从本质上发现并提出了超分辨率图像重建的一些问题.在此基础上,提出了基于深度学习的超分辨率图像重建方法未来的研究趋势.  相似文献   

11.
基于深度学习的单幅图像超分辨率网络模型体积庞大,导致参数利用率低且难以部署,对中间层特征利用不充分。提出一种密集反馈注意力网络(DFAN)模型。在同一特征图中通过多尺度残差注意力模块(MRAB)提取不同尺度的深层特征,以增加特征的多样性。同时将每个MRAB的输出均作为同组中其他残差模块的输入,使各层之间的信息流最大化,从而减小训练难度。实验结果表明,相比VDSR、DRRN、MemNet等模型,DFAN模型具有较优的重建效果,其在重建放大倍数为4的Set5数据集上计算复杂度仅为VDSR模型的0.14倍左右,而峰值信噪比提高了0.57 dB。  相似文献   

12.
The tradeoff between efficiency and model size of the convolutional neural network (CNN) is an essential issue for applications of CNN-based algorithms to diverse real-world tasks. Although deep learning-based methods have achieved significant improvements in image super-resolution (SR), current CNN-based techniques mainly contain massive parameters and a high computational complexity, limiting their practical applications. In this paper, we present a fast and lightweight framework, named weighted multi-scale residual network (WMRN), for a better tradeoff between SR performance and computational efficiency. With the modified residual structure, depthwise separable convolutions (DS Convs) are employed to improve convolutional operations’ efficiency. Furthermore, several weighted multi-scale residual blocks (WMRBs) are stacked to enhance the multi-scale representation capability. In the reconstruction subnetwork, a group of Conv layers are introduced to filter feature maps to reconstruct the final high-quality image. Extensive experiments were conducted to evaluate the proposed model, and the comparative results with several state-of-the-art algorithms demonstrate the effectiveness of WMRN.   相似文献   

13.
肖雅敏  张家晨  冯铁 《计算机工程》2021,47(2):293-299,306
基于卷积神经网络的单图像超分辨率模型网络结构过深,导致高频信息丢失以及模型体积庞大等问题.提出一种由多个残差模块构成的多窗口残差网络优化模型,通过使用多个不同尺寸的窗口对同一特征图进行提取,获取更丰富的高频与低频信息,并过滤出深层网络的所需特征.残差模块中较大尺寸的窗口采用较小尺寸的滤波器和多层映射层叠加组成,可在减少...  相似文献   

14.
针对现有基于深度学习的图像超分辨率重建方法,其对细节纹理恢复过程中容易产生伪纹理,并且没有充分利用原始低分辨率图像丰富的局部特征层信息的问题,提出一种基于注意力生成对抗网络的超分辨率重建方法.该方法中生成器部分是通过注意力递归网络构成,其网络中还引入了密集残差块结构.首先,生成器利用自编码结构提取图像局部特征层信息,并提升分辨率;然后,通过判别器进行图像修正,最终将图像重建为高分辨率图像.实验结果表明,在多种面向峰值信噪比超分辨率评价方法的网络中,所设计的网络表现出了稳定的训练性能,改善了图像的视觉质量,同时具有较强的鲁棒性.  相似文献   

15.
王诗言  曾茜  周田  吴华东 《计算机工程》2021,47(3):269-275,283
目前多数利用卷积神经网络进行图像超分辨率重建的方法忽视对自然图像固有属性的捕捉,并且仅在单一尺度下提取特征。针对该问题,提出一种基于注意力机制和多尺度特征融合的网络结构。利用注意力机制融合图像的非局部信息和二阶特征,提高网络的特征表达能力,同时使用不同尺度的卷积核提取图像的不同尺度信息,以保存多尺度完整的信息特征。实验结果表明,该方法重建图像的客观评价指标和视觉效果均优于Bicubic、SRCNN、SCN和LapSRN方法。  相似文献   

16.
17.
最近几年,深层卷积神经网络在解决单图像超分辨率问题上有着不错的表现。为了改善卷积神经网络的层数越深带来的计算量越大和实时重建速度越慢的缺点,结合现有的卷积网络模型,本文提出一种轻量级的网络结构。在神经网络层中减少网络层数,利用通道分离构建出局部特征的多尺度增强结构,进一步地结合残差网络进行模型构建。实验结果表明,与LapSRN方法、VDSR方法、传统的插值法等相比,该方法实时重建速度较快,且在峰值信噪比和结构相似性上不弱于其他方法。  相似文献   

18.
传统的卷积神经网络用到的方法是在稀疏表示的超分辨率图像的基础上学习高/低分辨率图像之间端到端的映射,输入的是高分辨率的图像,输出的是低分辨率的图像,拥有三层卷积层的SRCNN虽然有一定的重建效果,但是感受野较低,因此,提出加深网络结构的方法,此次改进使得后面的网络层拥有更大的感受野,这样结果的像素点可以根据更多的像素点来推断。但是考虑到网络结构加深对传输速率的影响,通过引入局部残差学习和全局残差学习相结合的方法来提高学习率,通过该办法有效地加快了收敛速度,并且通过实验结果验证,与已有的Bicubic、SRCNN和VDSR相比,重建效果在峰值信噪比、结构相似性和视觉效果上均有所提升。  相似文献   

19.
图像超分辨率重建在安防系统,小目标检测以及医学图像等有着广泛的应用.本文提出一种双路径反馈网络来提高图像超分辨重建的性能.在双路径网络中,一条路径采用深度残差稠密网络学习重建图像的高频信息,另一条路径直接在输入图像上通过亚像素卷积层上采样到所需分辨率来给重建图像提供低频信息,然后将两条路径得到的特征图进行融合来自适应的选取所需要的信息,接着通过一个反馈型卷积层进行局部循环训练来获得大的感受野.通过在数据集DIV2K上训练,实验结果表明所提方法的有效性和优越性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号