首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lead zirconate titanate PbZr0.53Ti0.47O3 (PZT) thick films have been deposited on silicon substrate by modified metallorganic decomposition process. Crack-free PZT films of 8 μm thickness can be obtained by using lanthanum nickelate LaNiO3 (LNO) as buffer layer. The greater LNO thickness, the greater thickness of crack-free PZT can be obtained. The X-ray diffraction measurements show the films exhibit a single perovskite phase with (110) preferred orientation. SEM measurements showed the PZT thick films have a columnar structure with grain size about 60–200 nm. The thickness dependence of ferroelectric, dielectric, and piezoelectric properties of PZT thick films have been characterized over the thickness range of 1–8 μm. For PZT with thickness of 8 μm, P r and E c are 30 μC/cm2 and 35 kV/cm, and dielectric constant and dielectric loss are 1030 and 0.031, respectively. The piezoelectric coefficient ( d 33) of PZT with 8 μm thickness is obtained to be 77 pm/V. PZT thick films on LNO-coated Si substrate are potential for MEMS applications.  相似文献   

2.
Graded Pb(Zrx,Ti1−x)O3 films with Zr compositions varied across the thickness direction were deposited on Pt/Ti/SiO2/Si substrate using a conventional spin-coating method. The up- and down-graded PZT films exhibited the perovskite polycrystalline structure. Microstructure investigations of the films showed a dense texture and successive layers of different compositions. The relative permittivities of the up- and down-graded PZT films measured at 1 kHz and room temperature were 1846 and 1019, respectively. Good dielectric and ferroelectric properties as well as the low-temperature processing suggested that the compositionally graded PZT films were promising for memory device applications.  相似文献   

3.
Lead zirconium titanate (PZT) thin films of the morphotropic phase boundary composition [Pb(Zr0.52Ti0.43)O3] were deposited on platinum-coated silicon by a modified sol-gel process using lead acetylacetonate as the lead source. The precursor solution for spin coating was prepared from lead acetylacetonate, zirconium n -butoxide, and titanium isopropoxide. The use of lead acetylacetonate instead of the widely used lead acetate trihydrate provided more stability to the PZT precursor solution. Films annealed at 700°C for 12 min formed well-crystallized perovskite phase of Pb(Zr0.52Ti0.48)O3. Microstructures of these films indicated the presence of submicrometer grains (0.1 to 0.2 μm). The dielectric constant and loss values of these films measured at 10 kHz were approximately 1200 and 0.04, respectively, while the remanent polarization and coercive field were ∼ 13 μC/cm2 and ∼ 35 kV/cm. Aging of the solution had almost no effect on the dielectric and ferroelectric properties of these films.  相似文献   

4.
Lead zirconium titanate (Pb(Zr0.5Ti0.5)O3, PZT) ferroelectric thin films were successfully deposited on platinum-coated silicon substrates and platinum-coated silicon substrates with a PbTiO3 interlayer by using a modified sol–gel spin-coating process, using zirconium oxynitrate dihydrate as the zirconium source. The precursor solution for spin coating was prepared from lead acetate trihydrate, zirconium oxynitrate dihydrate, and tetrabutyl titanate. The use of zirconium oxynitrate instead of the widely used zirconium alkoxide provided more stability to the PZT precursor solution and a well-crystallized structure of PZT film at a relatively low processing temperature. PZT films that were annealed at a temperature of 700°C for 2 min via a rapid thermal annealing process formed a well-crystallized perovskite phase of PZT films and also had nanoscale uniformity. The microstructure and morphology of the prepared PZT thin films were investigated via X-ray diffractometry, transmission electron microscopy, and atomic force microscopy techniques. The values for the remnant polarization ( P ) and coercive electric field ( E ) of the PZT films that were obtained from the P–E loop measurements were 3.67 μC/cm2 and 54.5 kV/cm, respectively.  相似文献   

5.
A tensile or compressive mechanical constraint was applied, during annealing, on the Pb(Zr0.6Ti0.4)O3 (PZT) ferroelectric films to investigate the effects of stress on its crystal structure and electric properties. The external stress was applied by bending the substrate into a circular section. By using both precrystallized film structure and high constraint strain (0.08%), the stress states of PZT during the crystallization process became controllable. Structural change of polycrystalline PZT was observed when crystallized under a compression constraint. Moreover, these films with compression constraint annealing exhibited enhanced remnant polarization by ∼70% and increased dielectric constant by ∼68%. The variations in ferroelectric behaviors were correlated to domain configuration, texture, amount of pyrochlore phase, grain size and residual stress, which are dependent on the stress state during annealing process.  相似文献   

6.
Thin layers of Pb[(Mg1/3Nb2/3)1– x Ti x ]O3 (PMNT) were prepared by spin casting alkoxide-based solutions on platinized Si. The effects of additives, heat treatment, and composition ( x = 0 to 0.9) on perovskite phase development, ceramic microstructure, and dielectric properties are reported. Depending upon the processing conditions, ceramic thin layers could be formed in a nonferroelectric pyrochlore phase (A2B2O6) or in a ferroelectric perovskite phase (ABO3). The dimensions of the pyrochlore and perovskite units cells were related and increased with Mg and Nb contents. To minmize pyrochlore formation, the most effective processing method involved rapid heat treatment between successive solution depositions. Phase development and microstructure were also affected by solution additives. Additions of benzoic acid were found to affect the structure in solution and the later organic pyrolysis behavior from thin layers. The effect of composition on the dielectric and ferroelectric properties is also reported.  相似文献   

7.
Pb(Mg1/3Ta2/3)0.7Ti0.3O3 thin films of single perovskite phase were successfully synthesized by using the RF sputtering deposition technique, followed by post-thermal annealing. While the perovskite structure of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 is rather unstable, phase evolution in the thin films was manipulated by controlling both working pressure during the sputtering process and post-thermal annealing temperature. The desirable perovskite phase was promoted by increasing the working pressure in the range of 10–25 mTorr, followed by thermal annealing at 600°C. The ferroelectric, dielectric, and polarization behaviors of Pb(Mg1/3Ta2/3)0.7Ti0.3O3 films were characterized over a wide range of frequencies. They are strongly affected by the film thickness, where the relative permittivity and remanent polarization increase, while the coercive field decreases with increasing film thickness in the range of 115–360 nm.  相似文献   

8.
Thin films of Pb(Zr0.52Ti0.48)O3 (PZT) were prepared by hybrid processing (sol-gel and excimer laser ablation) on Pt/Ti/SiO2/Si substrates. Crystalline phases and microstructures of the PZT films were investigated by X-ray diffraction analysis and scanning electron microscopy, respectively. Electrical properties of the films were evaluated by measuring their P - E hysteresis loops and dielectric constants. The temperature of postdeposition annealing in hybrid processing was lower than that in the case of direct film deposition by laser ablation on a Pt/Ti/SiO2/Si substrate. The preferred orientation of the films derived by hybrid processing could be controlled using the seeding layer deposited by the sol-gel process. The films fabricated by hybrid processing consisted of the perovskite phase with a (111) preferred orientation and had good ferroelectric properties.  相似文献   

9.
Microstructure and phase development during the thermal decomposition of sol–gel precursor coatings of PbZr0.53Ti0.47O3 on platinized silicon substrates have been investigated for a triol sol–gel route. The single-layer, 0.4 μm PZT films were heated from below the substrate, over the temperature range 350–600°C, using a calibrated hot plate. The first crystalline phase to appear was a PbPt3 intermetallic phase at the Pt/PZT interface. Although perovskite PZT formed at ca. 500°C, heating at higher temperatures, for example 550°C for 30 min, was required to develop ferroelectric hysteresis loops. However, the rather low value of remanent polarization, P r= 11 μC·cm−2, was consistent with incomplete crystallization at 550°C. The values of remanent polarization increased with increasing processing temperatures, reaching 21 μC·cm−2 for samples heated at 600°C, with a corresponding E c value of 57 kV·cm−1. Distinctive spherical precipitates up to ca. 50 nm in size have been identified by TEM in the lower portions of otherwise amorphous coatings, after heating at around 350–400°C. Although their precise composition could not be identified, they were mostly Pb-rich, and it is speculated that they form due to reduction of some of the lead(II) acetate starting reagent, to atomic Pb during the early stages of thermal decomposition of the organic components of the gel; it is possible that subsequent reactions occur to form lead oxides or carbonates. High levels of porosity were present in many of the fully crystallized films. The possible reasons for this are discussed.  相似文献   

10.
Lead zirconate titanate (PZT) thin films were deposited by metal-organic chemical vapor deposition (MOCVD) using β-diketonate precursors and 02 at temperatures below 500°C on variously passivated Si substrates. PZT thin films could not be deposited on bare Si substrates, owing to a serious diffusion of Pb into the Si substrate during deposition. Pt/SiO2/Si substrates could partially block the diffusion of Pb, but a direct deposition of PZT thin films on the Pt/SiO2/Si substrates resulted in a very inhomogeneous deposition. A TiO2 buffer layer deposited on Pt/SiO2/Si substrates could partially suppress the diffusion of Pb and produce homogeneous thin films. However, the crystallinity of PZT thin films deposited on the TiO2-buffered Pt/SiO2/Si substrate was not good enough, and the films showed random growth direction. PZT thin films deposited on the PbTiO3-buffered Pt/SiO2/Si substrates had good crystallinity and a- and c-axis oriented growth direction. However, the PZT thin film deposited at 350°C showed fine amorphous phases at the grain boundaries, owing to the low chemical reactivities of the constituent elements at that temperature, but they could be crystallized by rapid thermal anneaiing (RTA) at 700°C. PZT thin film deposited on a 1000-å PbTiO3,-thin-film-buffered Pt/SiO2/Si substrate at 350°C and rapid thermally annealed at 700°C for 6 min showed a single-phase perovskite structure with a composition near the morphotropic boundary composition.  相似文献   

11.
A qualitative model for the sequence of phase transforma-tions leading to perovskite phase formation in sol–gel-derived PZT thin films is presented. It is suggested that for sol–gel-derived Pb(ZrxTi1–x)O3 (x = 0.4) thin films, prepared using the molecularly modified alkoxide precursors (MMAP) approach, complete (or partial) conversion of the originally amorphous film into a "pyrochlore" phase, although possible, may not be necessary. Differences between the sequence of phase formation encountered in the tradi-tional (oxide-mix) synthesis and that in chemically derived ceramics are discussed. The sequence of phase formation in these thin films also appears to be intertwined with the texture development in that a (111) PZT texture develop-ment appears to be controlled by nucleation of the perovs-kite phase, assisted by a solid-phase epitaxial effect, and the (100)/(001) texture appears to be growth controlled.x  相似文献   

12.
Switchable polarization can be significantly suppressed in ferroelectric (FE) materials by electrical or optical processes. Electrical suppression can occur by subjecting the FE to repeated polarization reversals; optical suppression can occur while biasing the FE near the switching threshold and illuminating with bandgap light. A link between the two processes in Pb(Zr,Ti)O3 (PZT) thin film capacitors is demonstrated by showing a relationship between the amount of the suppressed polarization induced by the two methods. This observation suggests that the optical method may be a useful, simple, and time-saving probe of a material's susceptibility to fatigue. These results further support the view that polarization suppression in PZT thin films induced by electrical fatigue largely involves electronic charge trapping.  相似文献   

13.
Ferroelectric thin films of bismuth-containing layered perovskite Bi4Ti3O12 have been fabricated by a metalorganic decomposition (MOD) method. Crack-free and crystalline films of ∼5000 Å thickness have been deposited on Pt/Ti/SiO2/Si substrates. Different heat treatments have been studied to investigate the nucleation and growth of perovskite Bi4Ti3O12 crystallites. If the same composition and final annealing temperature are used, films with different orientations are obtained by different heating schedules. These films show a large anisotropy in ferroelectric properties. Theoretical considerations are presented to suggest that nucleation control is responsible for texture and grain-size evolution. Moreover, the origin of the ferroelectric anisotropy is rooted in the two-dimensional nature of layered polarization.  相似文献   

14.
We used a Ca–Bi–Ti complex alkoxide, in which metal–oxygen bonding was confirmed by spectroscopic analysis, to deposit CaBi4Ti4O15 (CBTi144) thin films in various configurations. The phase transition of non-ferroelectric pyrochlore to ferroelectric perovskite in the complex-alkoxy-derived CBTi144 thin films was found to depend on the Pt bottom electrodes. Matching of the atomic arrangement to the Ca–Bi–Ti–O thin films was predominant rather than the strain and crystallinity of the bottom electrode. The thin films crystallized at 650°C on (111)-oriented Pt showed random orientation and ferroelectric P – V hysteresis loops. The endurance property was excellent against a number of switchings. For this reason, CBTi144 thin films would be expected to be excellent for application to ferroelectric random access memories (FeRAM). Polar-axis-oriented CBTi144 films were fabricated on Pt foils using the complex metal alkoxide solution. The 500-nm-thick film had a columnar structure comprising well-developed grains. The a / b -axis orientation of the ferroelectric films is considered to be associated with the preferred orientation of Pt foil. The film showed improved ferro- and piezoelectric properties. The P r, E c, and d 33 values were enhanced to become twice those of CBTi144 thin films with random orientation. These polar-axis-oriented CBTi144 films are eminently useful in devices as Pb-free piezoelectric materials.  相似文献   

15.
Ferroelectric Pb(ZrxT1–x)O3, films were successfully and reproducibly deposited by both hot–wall metalorganic chemical vapor deposition (MOCVD) and cold-wall MOCVD. One of the important problems associated with the MOCVD techniques is the selection of ideal precursors. After an intensive investigation for the most suitable precursors for MOCVD PZT films, the safe and stable precursors, namely lead tetramethylheptadione [Pb(thd)2], zirconium tetramethylheptadione [Zr(thd)4], and titanium ethoxide [Ti(OEt)4], were chosen. The films were deposited at temperatures as low as 550°C and were single-phase perovskite in the as-deposited state. Also, the films were smooth, specular, crack-free, and uniform, and adhered well to the substrates. The stoichiometry of the films can be easily controlled by varying the individual precursor temperature and/or the flow rate of the carrier gas. Auger electron spectroscopic (AES) depth profile showed good compositional uniformity through the thickness of the films. The AES spectra also showed no carbon contamination in the bulk of the films. As-deposited films were dense and showed uniform and fine grains (≅0.1 μm).The optical properties of the films on the sapphire disks showed high refractive index ( n = 2.413) and low extinction coeflicient ( k = 0.0008) at a wavelength of 632.8 nm. The PZT (82/18) film annealed at 600°C showed a spontaneous polarization of 23.3 μC/cm2 and a coercive field of 64.5 kV/cm.  相似文献   

16.
Pb(Zr,Ti)O3 (PZT) thick films were deposited onto stainless-steel substrates by aerosol deposition using different kinds of carrier gases and were irradiated by CO2 laser both during and after deposition, for the recovery of ferroelectricity. The ferroelectric and dielectric properties of PZT films deposited using oxygen and nitrogen gases and irradiated by CO2 laser were superior to those of films deposited using He gas and irradiated by the laser. Some kinds of defects within the film were relaxed by CO2 laser irradiation during deposition, and grain growth in the film was promoted by post-annealing using laser irradiation.  相似文献   

17.
Processing effects on the dielectric properties of sol–gel-derived PbZrO3–PbTiO3 (PZT) films integrated onto Pt/Ti/SiO2//Si substrates are reported. Sol–gel synthesis and deposition conditions were designed to produce films of varying thickness (95–500 nm) with consistent chemical composition (Pb (Zr0.53Ti0.47)O3), phase content (perovskite), grain size (∼110 nm), crystallographic orientation (nominally (111) fiber textured), and measured residual stress. The Stoney method, using laser reflectance to determine wafer curvature, derived biaxial tensile stress values of 150 and 180 MPa for PZT films after a baseline correction for electrode interactions during thermal processing was employed. The PZT films were of high dielectric quality, with low losses and negligible dispersion. Calculated values of dielectric constant ( ̄ ') were found to decrease from 960 to 600 with decreasing film thickness. A series-capacitor model successfully recovered a room-temperature K 1' for the PZT (1,170) in good agreement with bulk reports but was unable to reproduce the expected dielectric anomaly near 380°C. This discrepancy and the resulting diffuse phase transformation were attributed to the biaxial tensile stress present in the PZT films.  相似文献   

18.
Magnetoelectric (ME) composite structures of Pb(Zr0.52Ti0.48)O3 (PZT) and CoFe2O4 (CFO) were prepared by directly growing PZT films on highly dense CFO ceramics via a simple solution spin coating, rather than by conventional high-temperature cofiring. An obvious ME response, which had the same bias-dependent trend as the piezomagnetic coefficient of CFO ceramics, was observed in such film-on-bulk ceramic composites. It was found that the PZT films showed a good ferroelectric feature, and the ME response of the composites strongly depended on the resistivity of the CFO ceramics as both a substrate and a bottom electrode. The results suggest plenty of room for further enhancing the ME response of such films-on-ceramic substrate composites.  相似文献   

19.
Extensive solid solution was observed in the system Pb(Sc1/2/,Nb1/2,)1-x,Tix,O3. In the range 0 ≤ x ≤ 0.425 a rhombohedral ferroelectric phase was stable at 25° C. In the range 0.45 ≤ x ≤ 1.00 a tetragonal ferroelectric phase was stable at this temperature. The phase diagram of the system below 500° C strongly resembles that of PbZrO3−PbTiO3. The compound Pb(Sc1/2Nb1/2)O3 exhibited rhombohedral perovskite cell symmetry below the ferroelectric ↔ paraelectric transition temperature, and the angle a was acute. The radial coupling coefficient was 0.46 for the composition Sc1/2Nb1/2)0.575Ti0.4250O3. At 25°C this composition consisted primarily of the rhombohedral phase with a small amount of the tetragonal phase present. The ferroelectric ↔ paraelectric transition occurred over a temperature range in the rhombohedral phase field. The spontaneous polarization was finite at temperatures considerably above the temperature of the permittivity maximum for a given rhombohedral solid solution.  相似文献   

20.
Lead magnesium niobium titanate (PMNT) thin films with a composition near the morphotropic phase boundary were prepared on conventional Pt(111)/Ti/SiO2/Si substrates using a modified sol-gel process. A PbO seeding layer was introduced to the interface between the PMNT layer and the substrate to enhance the [001]-preferential orientation of the PMNT film. Single-phase perovskite PMNT films with highly [001]-preferential orientation were obtained at reduced annealing temperatures compared with the PMNT films directly deposited on the same substrates. The dielectric and ferroelectric properties of the prepared PMNT films were evaluated as a function of annealing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号