首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arc-based intensity modulated radiation therapy (IMRT) planning and delivery is available as a commercial product (Nomos Corp.). The dose distribution is delivered to 1.68 cm thick regions, and the patient moved in a precise manner between treatments. Assuming accurate patient positioning, the abutment region dose distribution near the gantry isocentre is delivered with no undesired dose heterogeneities. However, for regions far from the isocentre, the dose distribution may exhibit high- or low-dose regions due to uncompensated beam divergence for arc treatments of less than 360 degrees gantry angle length. A study has been initiated to characterize abutment region dose distribution heterogeneities for sequential arc IMRT delivery. Five dose distributions were optimized, each using 8 cm diameter target volumes at different distances from the isocentre, and the arc delivery limited to 290 degrees symmetric about the vertical axis. The target lengths were sufficient to require a treatment consisting of five couch positions, yielding four abutment regions. The dose within the abutment regions was measured using film and analysed as a function of off-axis position along both the vertical and horizontal directions. Little dependence on the dose heterogeneity was seen along the horizontal axis passing through the isocentre. However, the abutment regions along the vertical axis contained 15% low and 7% high doses at 7 cm above and below the isocentre respectively. This dose heterogeneity is not predicted by the current clinical release of the treatment planning software due to limitations of the dose calculation algorithm. The intensity of dose heterogeneity is considered sufficient to warrant further study.  相似文献   

2.
3.
4.
Conventional inverse treatment planning attempts to calculate dose distributions that may not be feasible given the specified dose levels to various anatomical structures. A technique for inverse treatment planning has been developed that uses only target dose levels which are easily selectable to be feasible. A nonlinear constrained minimization problem is formulated to reflect the goal of sparing critical organs as much as possible while delivering a certain target dose within specified uniformity. The objective function is the squared dose delivered to critical organs. The constraints require the delivery of certain target dose within specified uniformity and non-negative pencil beam weights. A continuous penalty function method is introduced as a method for solving the large-scale constrained minimization problem. The performance of the continuous penalty function method is optimized by numerical investigation of few numerical integration schemes and a pair of weighting functions which influence the utility of the method. Clinical examples are presented that illustrate several features of the technique. The properties of the continuous penalty function method suggest that it may be a viable alternative to conventional inverse treatment planning.  相似文献   

5.
Not until the last decade has flexible intensity modulated three-dimensional dose delivery techniques with photon beams become a clinical reality, first in the form of heavy metal transmission blocks and other beam compensators, then in dynamic and segmented multileaf collimation, and most recently by scanning high-energy narrow electron and photon beams. The merits of various treatment unit and bremsstrahlung target designs for high-energy photon therapy are investigated theoretically for two clinically relevant target sites, a cervix and a larynx cancer both in late stages. With an optimized bremsstrahlung target it is possible to generate photon beams with a half-width of about 3 cm at a source to axis distance (SAD) of 100 cm and an initial electron energy of 50 MeV. By making a more compact treatment head and shortening the SAD, it is possible to reduce the half-width even further to about 2 cm at a SAD of 70 cm and still have sufficient clearance between the collimator head and the patient. One advantage of a reduced SAD is that the divergence of the beam for a given field size on the patient is increased, and thus the exit dose is lowered by as much as 1%/cm of the patient cross section. A second advantage of a reduced SAD is that the electron beam on the patient surface will be only about 8 mm wide and very suitable for precision spot beam scanning. It may also be possible to reduce the beamwidth further by increasing the electron energy up to about 60 MeV to get a photon beam of around 15 mm half-width and an electron beam as narrow as 5 mm. The compact machine will be more efficient and easy to work with, due to the small gantry and the reduced isocentric height. For a given target volume and optimally selected static multileaf collimator, it is no surprise that the narrowest possible scanned elementary bremsstrahlung beam generates the best possible treatment outcome. In fact, by delivering a few static field segments with individually optimized scan patterns, it is possible to combine the advantage of being able to fine tune the fluence distribution by the scanning system with the steeper dose gradients that can be delivered by a few static multileaf collimator segments. It is demonstrated that in most cases a few collimator segments are sufficient and often a single segment per beam portal may suffice when narrow scanned photon beams are employed, and they can be delivered sequentially with a negligible time delay. A further advantage is the increase of therapeutically useful photons and improved patient protection, since the pencil beam is only scanned where the leaf collimator is open. Consequently, some of the problems associated with dynamic multileaf collimation such as the tongue and groove and edge leakage effects are significantly reduced. Fast scanning beam techniques combined with good treatment verification systems allow interesting future possibilities to counteract patient and internal organ motions in real time.  相似文献   

6.
A single phantom technique has been developed to verify the full CT simulation and treatment-beam delivery procedures. The phantom consists of a target delineated by thin copper strips, affixed to therapy verification film, and inserted securely between two slices of water-equivalent material. The target is defined with the aid of the copper strips, and the position of the isocenter and beam parameters such as field size, and gantry and collimator angle are determined by CT simulation. With these parameters, the phantom is subsequently irradiated by the linear accelerator in the treatment position. Correspondence between the planned and the irradiated region is determined by the position of the copper strips on the film. The technique is a simple and practical method for verifying the entire CT simulation and treatment-beam delivery processes, and provides a permanent record of the correspondence between the planning digitally reconstructed radiographs (DRR) and the actual beam delivered.  相似文献   

7.
PURPOSE: To perform stereotactic radiation therapy (SRT) without cranially fixated stereotactic frames, we developed a dual computed tomography (CT) linear accelerator (linac) treatment unit. METHODS AND MATERIALS: This unit is composed of a linac, CT, and motorized table. The linac and CT are set up at opposite ends of the table, which is suitable for both machines. The gantry axis of the linac is coaxial with that of the CT scanner. Thus, the center of the target detected with the CT can be matched easily with the gantry axis of the linac by rotating the table. Positioning is confirmed with the CT for each treatment session. Positioning and treatment errors with this unit were examined by phantom studies. Between August and December 1994, 8 patients with 11 lesions of primary or metastatic brain tumors received SRT with this unit. All lesions were treated with 24 Gy in three fractions to 30 Gy in 10 fractions to the 80% isodose line, with or without conventional external beam radiation therapy. RESULTS: Phantom studies revealed that treatment errors with this unit were within 1 mm after careful positioning. The position was easily maintained using two tiny metallic balls as vertical and horizontal marks. Motion of patients was negligible using a conventional heat-flexible head mold and dental impression. The overall time for a multiple noncoplanar arcs treatment for a single isocenter was less than 1 h on the initial treatment day and usually less than 20 min on subsequent days. Treatment was outpatient-based and well tolerated with no acute toxicities. Satisfactory responses have been documented. CONCLUSION: Using this treatment unit, multiple fractionated SRT is performed easily and precisely without cranially fixated stereotactic frames.  相似文献   

8.
A mathematical model is derived for digitally controlled linear accelerators to deliver a desired photon intensity distribution by combining collimator motion and machine dose rate variations. It shows that, at any instant, the quotient of the machine dose rate and the speed of collimator motion is proportional to the gradient of the desired in-air photon fluence distribution. The model is applicable for both independently controlled collimator jaws and multileaf collimators and can be implemented by controlling different parameters to accommodate linear accelerators from different manufactures. For independent jaws, each pair of jaws creates photon fluence variations along the direction of the jaw movement. For multileaf collimators, where each leaf is independently controlled, any two-dimensional (2D) photon fluence distribution can be delivered. The model has been implemented for wedged isodose distributions using independent jaws, and 2D intensity modulation using a multileaf collimator. One-dimensional (1D) wedged isodose distributions are created by moving an independent jaw at constant speed while varying machine dose rate. 2D intensity modulation has been implemented using a 'dynamic stepping' scheme, which controls the leaf progression during irradiation at constant machine dose rate. With this automated delivery scheme, the beam delivery time for dynamic intensity modulation, which depends on the complexity of the desired intensity distribution, approaches that of conventional beam modifiers. This paper shows the derivation of the model, its application, and our delivery scheme. Examples of 1D dynamic wedges and 2D intensity modulations will be given to illustrate the versatility of the model, the simplicity of its application, and the efficiency of beam delivery. These features make this approach practical for delivering conformal therapy treatments.  相似文献   

9.
PURPOSE: To compare resultant lung dose from proton arc therapy of the chest wall to that from electron arc therapy. METHODS AND MATERIALS: A 200 MeV proton beam from the Indiana University Cyclotron was range shifted and modulated to provide a spread out Bragg peak extending from the surface to a depth of 4 cm in water. The chest wall of an Alderson Rando phantom was irradiated by this beam, collimated to a 20 x 4 cm field size, while it rotated on a platform at approximately 1 rpm. For comparison, electron arc therapy of the Rando phantom chest wall was similarly performed with 12 MeV electrons and the resultant lung dose measured in each case. RESULTS: Dose-volume histograms for the Rando phantom left lung indicate a reduced volume of irradiated lung for protons at all dose levels and an integral lung dose that is half that for electron arc therapy in the case studied. In addition, a more uniform dose coverage of the target volume was achieved with the proton therapy. CONCLUSION: This study demonstrates a potential role for proton arc therapy as an alternative to electron arc therapy when lung dose must be minimized.  相似文献   

10.
An experimental study of radiation output intensity fluctuations of a Philips SL25 linear accelerator is presented. Measurements are obtained using an electronic portal imaging device, and the consequences of the measured fluctuations for various different applications of megavoltage imaging including portal imaging, transit dosimetry and megavoltage computed tomography (MVCT) are discussed with examples. Fluctuations in output of +/- 0.7% (1 SD) are seen on every radiation pulse after photon noise and uncertainties caused by the detection system have been accounted for. Large fluctuations are also seen during the initial beam stabilization period (15%), during normal accelerator operation after the beam has been on for more than 1 min (4.5%) and during are therapy as a repeatable function of gantry angle (9%). Such output intensity fluctuations are shown to produce image artifacts in portal imaging devices with scanned detector readout and can also produce systematic errors in detector calibration that would lead to uncertainty in transit dose calculations. The propagation of these intensity fluctuations through MVCT image reconstruction is shown to produce ring artifacts in the reconstructed image. Sample portal and MVCT images are presented. All observed fluctuations in accelerator output are well within the manufacturer's specifications and do not affect the total dose delivered during normal treatment. Finally, megavoltage imaging is shown to be a powerful tool for accelerator quality assurance and treatment verification.  相似文献   

11.
PURPOSE: We have described previously a model for delivering computer-controlled radiation treatments. We report here on the implementation and first year's clinical experience with such treatments using a 50 MeV medical microtron. METHODS AND MATERIALS: The microtron is equipped with a multileaf collimator and is capable of setting up and treating a sequence of fixed fields called segments, under computer control. An external computer derives machine parameters for the segments from a three-dimensional treatment planning system, transfers them to the microtron control computer, checks the machine settings before allowing dose delivery to begin, and records the treatment. We describe the patient treatment methodology, portal film acquisition, electronic portal imaging, and quality assurance. RESULTS: Patient treatments began in July 1992, comprising six-segment conformal treatments of the prostate. Using the recorded treatment data, the system performance has been examined and compared to other treatment machines. The average treatment time is 10 min, of which 4 min is for computer-controlled setup and irradiation; the remaining time is for patient positioning and checking of clearances. Long-term reproducibility of computer-controlled setup of the gantry and multileaf position is better than 0.5 degrees and 1 mm, respectively. Termination due to a machine fault has occurred in 5.5% of treatments, improving to 2.5% in recent months. CONCLUSION: Our initial experience indicates that computer-controlled segmental therapy can be performed reliably on a routine basis. Treatment times with the microtron are significantly shorter than with conventional linacs, and setup accuracy is consistent with that needed for conformal therapy. We believe that treatment times can be further improved through software upgrades and integration of electronic portal imaging.  相似文献   

12.
PURPOSE: The ideal lens-sparing radiotherapy technique for retinoblastoma calls for 100% dose to the entire retina including the ora serrata and zero dose to the lens. Published techniques, most of which use photons, have not accomplished this ideal treatment. We describe here a technique that approaches this ideal configuration using electron beam therapy. METHODS AND MATERIALS: Dose-modeling calculations were made using a computer program built around a proprietary algorithm. This program calculates 3D dose distribution for electrons and photons and uses the Cimmino feasibility method for the inverse problem of beam weighting to achieve the prescribed dose. The algorithm has been verified in the ocular region by measurements in a RANDO phantom. To search for an ideal lens-sparing beam setup, a stylized phantom of an 8-month-old infant was generated with built-in inhomogeneities, and a phantom of a 5-year-old child was generated from a patient CT series. RESULTS: Of more than 100 different beam setups tested, two 9 MeV electron beams at gantry angles plus and minus 26 degrees from the optic nerve axis achieved the best distribution. Both fields have a lens block and an isocenter between the globe and origin of the optic nerve. When equal doses are given to both fields, the entire extent of the retina (including ora serrata) received 100%, while the lens received 10% or less. CONCLUSION: The two-oblique-electron-beam technique here described appears to meet most of the stringent dosimetry needed to treat retinoblastoma. It is suitable for a range of ages, from infancy to early childhood years.  相似文献   

13.
Recently, Siemens has introduced its Virtual Wedge (VW). On a Mevatron accelerator, this option generates a wedge-like dose profile by moving a collimator jaw at constant speed while varying the dose rate. In this paper the formalism is given that is used to deliver a wedge profile and from that the expressions for possible combinations of wedge angle, field size and delivered MUs are derived. Also the time needed to deliver a VW field is calculated. An effective attenuation coefficient mu is used in the implementation. For three beam energies, values of mu are determined in order to get VW angles that are as close as possible to the hard wedge angles, over a wide range of field sizes and wedge angles. Linearity with number of MUs and gantry angle dependence of the generated dose profiles were checked. These factors did not have a significant influence on the VW dose profiles. Wedge factors should be close to unity in the VW implementation. We have measured a number of wedge factors and found that they start to deviate from 1 with more than 1% for large wedge angles and field sizes, up to 3.5% for a 19 x 19 cm2, 60 degrees VW field. The Virtual Wedge turned out to be a reliable tool that can be used clinically, provided that it can be handled by the treatment planning system. It provides extra flexibility and usually results in shorter beam on times.  相似文献   

14.
Radiotherapy is an effective treatment for localized prostate cancer. A dose response relationship has been demonstrated for both local tumor control and complications. Reducing the volume of normal tissue treated may allow dose escalation without an increase in RT induced side effects. Androgen blockade before RT could, by reducing tumor volume, increase local control, disease-free (DFS) and overall survival in patients (pts) with prostatic adenocarcinoma. A total of 79 patients with T2-T4 prostate cancer have been treated initially with LHRH agonists and cyproterone acetate followed by radical irradiation between 1988 and 1993. The first cohort of 22 patients were monitored intensively by transrectal ultrasound and computed tomography. For each patient conformal photon beam radiotherapy and conventional treatment plans were produced and dose volume histograms compared for total volume, rectal volume, and bladder volume. Overall mean reduction of prostate volume was about 50%, and radiotherapy target volume was reduced by 37%. 53 further patients without clinical evidence of regional or distant metastases were given 3 months preradiotherapeutic hormonal cytoreduction with a short course of cyproterone acetate and LHRH. PSA level fell rapidly in most patients and after 3 months treatment the median PSA level was 1 ng/ml and 83% had PSA level 10 ng/ml. At 18 months PSA levels continued to be < 2 ng/ml in 70% of the patients. Combined modality treatment with the neoadjuvant or adjuvant androgen deprivation and conformal therapy show considerable promise as novel methods to improve the therapeutic ratio. This treatment approach may be used to explore the possibility of dose escalation in prostate cancer to enhance local control, and therapeutic randomised studies are underway to test these approaches.  相似文献   

15.
PURPOSE/OBJECTIVE: The measurement of complex dose distributions (those created by irradiation through multiple beams, multiple sources, or multiple source dwell positions) requires a dosimeter that can integrate the dose during a complete treatment. Integrating dosimeter devices generally are capable of measuring only dose at a point (ion chamber, diode, TLD) or in a plane (film). With increasing use of conformal dose distributions requiring shaped, noncoplanar beams, there will be an increased requirement for a dosimeter that can record and display a 3D dose distribution. The use of a 3D dosimeter will be required to confirm the accuracy of treatment plans produced by the current generation of 3D treatment-planning computers. METHODS AND MATERIALS: The use of a Fricke-infused gel and magnetic resonance imaging (MRI) to demonstrate the localization of stereotactic beams has been demonstrated (11). The recently developed BANG polymer gel dosimetry system (MGS Research, Inc., Guilford, CT), based on radiation-induced chain polymerization of acrylic monomers dispersed in a tissue-equivalent gel, surpasses the Fricke-gel method by providing accurate, quantitative dose distribution data that do not deteriorate with time (6, 9). The improved BANG2 formulation contains 3% N,N'-methylene-bisacrylamide, 3% acrylic acid, 1% sodium hydroxide, 5% gelatin, and 88% water, where all percentages are by weight. The gel was poured into volumetric flasks, of dimensions comparable to a human head. The gels were irradiated with complex beam arrangements, similar to those used for conformal radiation therapy. Images of the gels were acquired using a Siemens 1.5T imager and a Hahn spin-echo pulse sequence (90 degrees-tau-180 degrees-tau-acquire, for different values of tau). The images were transferred via network to a Macintosh computer for which a data analysis and display program was written. The program calculates R2 maps on the basis of multiple TE images, using a monoexponential nonlinear least-squares fit based on the Levenberg-Marquardt algorithm. The program also creates a dose-to-R2 calibration function by fitting a polynomial to a set of dose and R2 data points, obtained from gels irradiated in test tubes to known doses. This function can then be applied to any other R2 map, so that a dose map can be computed and displayed. RESULTS: Through exposure to known doses of radiation, the gel has been shown to respond linearly with dose in the range of 0 to 10 Gy, and its response is independent of the beam energy or modality. Dose distributions have been imaged in orthogonal planes, and can be displayed in a convenient form for comparison with isodose plans. The response of the gel is stable; the gel can be irradiated at any time after its manufacture, and imaging can be conducted any time following a brief interval after irradiation. CONCLUSION: The polymer gel dosimeter has been shown to be a valuable device for displaying three-dimensional dose distributions. The imaged dose distribution can be compared easily with calculated dose distributions, to validate a treatment planning system. In the future, gels may be prepared in anthropomorphic phantoms, to confirm unique patient dose distributions.  相似文献   

16.
PURPOSE: Dose escalation for prostate cancer by external beam irradiation is feasible by a 160 MeV perineal proton beam that reduces the volume of rectum irradiated. We correlated the total doses received to portions of the anterior rectum to study the possible relationship of the volume irradiated to the incidence of late rectal toxicity. METHODS: We have randomized 191 patients with stages T3 and T4 prostatic carcinoma to one of two treatment dose arms. These were: 1) 75.6 Cobalt-Gy-equivalent (CGE), 50.4 Gy delivered by 107-25 MV photons followed by 25.2 CGE delivered perineally by protons (Arm 1) or 2) 67.2 CGE delivered by 10-25 MV photons (Arm 2). RESULTS: With a median follow-up of 3.7 years, post-irradiation rectal bleeding (grades 1 and 2 only, none requiring surgery or hospitalization) from telangiectatic rectal mucosal vessels has occurred in 34% of 99 Arm-1 patients and 16% of 92 Arm-2 patients (p = 0.013). Dose-volume histograms (DVHs) for the anterior rectal wall, the posterior rectal wall and the total rectum in 41 patients treated on Arm 1 were calculated from the three dimensional dose distributions. Rectal bleeding has occurred in 14 or 34% of the 41 DVH-analyzed subset of Arm-1 patients. Both the fractional volume of the anterior rectum and the total dose received by fractional volumes of the anterior rectum significantly correlate with the actuarial probability of bleeding. CONCLUSIONS: Clinicians planning dose escalation to men with localized prostate cancer should approve with caution treatment plans raising more than 40% of the anterior rectum to more than 75 CGE without additional effort to protect the rectal mucosa because this late sequela data indicate that more than half of these men will otherwise have rectal bleeding.  相似文献   

17.
With the availability of commercial three-dimensional (3D)-treatment planning systems, more and more treatment plans call for the use of noncoplanar conformal beams for the treatment of brain tumors. However, techniques for the verification of many noncoplaner beams, such as vertex fields which involve any combination of gantry, collimator, and table angles, do not exist. The purpose of this work is to report on the results of an algorithm and a technique that have been developed for the verification of noncoplanar vertex fields used in the treatment of brain tumors. This technique is applicable to any geometric orientation of the beam, i.e., a beam orientation that consists of any combination of gantry, table, and collimator rotations. The method consists of superimposing a central plane image of a correctly magnified vertex field on a lateral or oblique field port film. To achieve this, the 3D coordinates of the projection of the isocenter onto the film for lateral (or oblique) as well as the vertex fields are determined and then appropriately matched. Coordinate transformation equations have been developed that enable this matching precisely. A film holder has been designed such that a film cassette can be secured rigidly along the side rails of the treatment table. The technique for taking a patient treatment setup verification film consists of two steps. In the first step, the gantry, table, and collimator angles for the lateral (or oblique) field are set and the usual double exposures are made; the first exposure corresponds to that of the treatment portal with the isocenter clearly identified and the second one a larger radiation field so that the peripheral anatomy is visible on the film. In the next step, the gantry, table, and collimator angles are positioned for the vertex field and the table is moved laterally and vertically and the film longitudinally to a position that will enable precise matching of the isocenter on the film. A third exposure is then taken with the vertex portal. What is seen on the film is a superposition of a central plane image of the vertex field onto the image of the lateral or oblique field. This technique has been used on 60 patients treated with noncoplanar fields for brain tumors. In all of these cases, the coincidence of the projection of the isocenter for the lateral (or oblique) and the vertex fields was found to be within 3 mm.  相似文献   

18.
As currently practiced, the doses delivered to tumors in radioimmunotherapy are less than desirable primarily because of dose-limiting bone marrow toxicity, thus reducing the therapeutic efficacy of this modality. The biological effectiveness of internal radionuclide therapy depends on the total dose, the rate at which it is delivered, and the fractionation schedule of the radiolabeled antibodies administered. A new approach, based on time-dose-fractionation (TDF), which has been used in conventional radiotherapy, is advanced. This approach incorporates differences in dose rates, biological half-lives of the antibodies, physical half-lives of the radionuclides employed and the total doses needed for a given biological effect. The TDF concept is illustrated with several relevant examples for radioimmunotherapy. Based on the TDF approach, it is proposed that under certain biological conditions radionuclides with physical half-lives that are 1-3 times the biological half-life of the radiolabeled antibodies in the tumor are more likely to deliver sterilization doses to tumors than the shorter-lived nuclides presently in use unless precluded by specific activity considerations. Several radionuclides that meet this criteria are suggested with 32P being the most promising among them. Finally, a practical method for treatment planning in radioimmunotherapy using TDF factors is recommended.  相似文献   

19.
The purpose of this work is to improve the quality of patient care in radiation therapy by implementing a comprehensive quality assurance (QA) program aiming to enhance patient in vivo dosimetry on a routine basis. The characteristics of two commercially available semi-conductor diode dosimetry systems were evaluated. The diodes were calibrated relative to an ionization chamber-electrometer system with calibrations traceable to the National Institute of Standards and Technology (NIST). Correction factors of clinical relevance were quantified to convert the diode readings into patient dose. The results of dose measurements on 6 patients undergoing external beam radiation therapy for carcinoma of the prostate on three different therapy units are presented. Field shaping during treatments was accomplished either by multileaf collimation or by cerrobend blocking. A deviation of less than +/-4% between the measured and prescribed patient doses was observed. The results indicate that the diodes exhibit excellent linearity, dose reproducibility, minimal anisotropy, and can be used with confidence for patient dose verification. Furthermore, diodes render real time verification of dose delivered to patients.  相似文献   

20.
PURPOSE: Many radiotherapy treatment plans involve some level of standardization (e.g., in terms of beam ballistics, collimator settings, and wedge angles), which is determined primarily by tumor site and stage. If patient-to-patient variations in the size and shape of relevant anatomical structures for a given treatment site are adequately sampled, then it would seem possible to develop a general method for automatically mapping individual patient anatomy to a corresponding set of treatment variables. A medical expert system approach to standardized treatment planning was developed that should lead to improved planning efficiency and consistency. METHODS AND MATERIALS: The expert system was designed to specify treatment variables for new patients based upon a set of templates (a database of treatment plans for previous patients) and a similarity metric for determining the goodness of fit between the relevant anatomy of new patients and patients in the database. A set of artificial neural networks was used to optimize the treatment variables to the individual patient. A simplified example, a four-field box technique for prostate treatments based upon a single external contour, was used to test the viability of the approach. RESULTS: For a group of new prostate patients, treatment variables specified by the expert system were compared to treatment variables chosen by the dosimetrists. Performance criteria included dose uniformity within the target region and dose to surrounding critical organs. For this standardized prostate technique, a database consisting of approximately 75 patient records was required for the expert system performance to approach that of the dosimetrists. CONCLUSIONS: An expert system approach to standardized treatment planning has the potential of improving the overall efficiency of the planning process by reducing the number of iterations required to generate an optimized dose distribution, and to function most effectively, should be closely integrated with a dosimetric based treatment planning system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号