首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to investigate the effects of both bias voltage and heat treatment on the composition, microstructure, and associated mechanical properties of the zirconium nitride (ZrN) thin films deposited on AISI 304 stainless steel substrates by a filtered cathodic arc ion-plating (FCA-IP) system. The depositions were carried out by varying negative substrate bias voltage, from −40 Vb to −80 Vb. The deposited film specimens were heat-treated at 800 °C for 1 h. X-ray diffraction (XRD) revealed that (a) texture coefficients of (1 1 1) plane increased with negative bias, and (b) the grain size was approximately less than 15 nm, i.e. nano-scale grain size. The hardness of the deposited ZrN films was correlated with point defects, (1 1 1) texture coefficient, and crystallinity characterized for the films. For the as-deposited films, it was found that the hardness increased with decreasing (1 1 1) full width of the peak at half maximum (FWHM) and increasing (1 1 1) texture coefficient, suggesting a better crystallinity and lower grain boundary mobility in the highly textured films. The decrease in film hardness after heat treatment may be attributed mainly to the reduction of point defects present in the films. Measurements performed for the intrinsic residual stress reported a significant 5.5 GPa release in the heat-treated films, due to recovery of point defects by heat treatment.  相似文献   

2.
The single-phase γ′-Fe4N nanocrystal magnetic films with grain size of d = 40–60 nm were synthesized on single crystal NaCl (1 0 0) substrate by DC magnetron sputtering at 150 °C. The structure, morphology of the single-phase γ′-Fe4N films were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), and the magnetic properties of samples prepared at different substrate temperatures were investigated by superconducting quantum interference device (SQUID). It is shown that substrate temperature has a significant influence on the crystalline structure and magnetic properties for Fe–N films. As substrate temperature was increased, the saturation magnetization for the deposited films increased, but the coercivity reduced.  相似文献   

3.
LaNiO3 (LNO) thin films were deposited on (1 0 0) MgO, SrTiO3 (STO) and LaAlO3 (LAO) crystal substrates by pulsed laser deposition (PLD) under 20 Pa oxygen pressure at different substrate temperatures from 450 to 750 °C. X-ray diffraction (XRD), ex situ reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM) were employed to characterize the crystal structure of LNO films. LNO films deposited on STO and LAO at a temperature range from 450 to 700 °C exhibit high (0 0 l) orientation. XRD ψ scans and RHEED observations indicate that LNO films could be epitaxially grown on these two substrates with cubic-on-cubic arrangement at a wide temperature range. LNO films deposited at 700 °C on MgO (1 0 0) substrate have the (l l 0) orientation, which was identified to be bicrystalline epitaxial growth. La2NiO4 phase appears in LNO films deposited at 750 °C on three substrates. The epitaxial LNO films were tested to be good metallic conductive layers by four-probe method.  相似文献   

4.
Quaternary Si–B–C–N materials are becoming increasingly attractive due to their possible high-temperature and harsh-environment applications. In this work, amorphous Si–B–C–N films with two compositions (Si34B9C4N49 and Si36B13C7N40) and low contamination level (H + O + Ar < 4 at.%) were deposited on silicon substrates by reactive dc magnetron co-sputtering using two different targets and gas mixtures. Thermal stability of these films was investigated in terms of composition, bonding structure, as well as mechanical and optical properties after annealing in helium up to a 1300°C substrate limit. Films with a high nitrogen content (Si34B9C4N49, i.e. N/[Si + B + C]~ 1.0) were found to be stable up to 1300°C. After annealing, the hardness and elastic recovery of those films slightly increased up to 27 GPa and 84%, respectively, and the reduced Young's modulus remained practically constant (~ 170 GPa). The refractive index and the extinction coefficient at 550 nm were evaluated at 2.0 and 5 × 10− 4, respectively, and the optical band gap was approximately 3.0 eV. In contrast, films with a lower nitrogen content (Si36B13C7N40, i.e. N/[Si + B + C]~ 0.7) were stable only up to 1200°C. Both Si–B–C–N materials studied here exhibited extremely high oxidation resistance in air up to the 1300°C substrate limit.  相似文献   

5.
We report on the effect of substrate miscut on the 2-dimensional interfacial structure and dielectric properties of the epitaxial Ba0.6Sr0.4TiO3/MgO. Epitaxial Ba0.6Sr0.4TiO3 films on vicinal (001) MgO grown by pulsed-laser ablation were studied using transmission electron microscopy (TEM). Plan-view TEM showed that the films grown on the substrate with miscut angles of 1.2°, 3.5°, and 5.3° have lattice mismatches of − 5.6%, − 6.0% and − 5.7% at the interface, larger than the values (− 5.4%, − 5.7% and − 5.5%, respectively) obtained using cross-section TEM. The films grown on 1.2° and 5.3° miscut substrates consist of commensurate domains with sizes about 30 to 40 nm at the interface, significantly larger than those of 10 to 20 nm obtained for the films grown on the 3.5° miscut substrate. The films with larger commensurate domains at the interface exhibit about 30% higher dielectric constant and dielectric tunability than those with smaller commensurate domains. Initial measurements show that their interfacial differences have a tremendous effect on the dielectric properties of the films.  相似文献   

6.
Titanium films on Si(1 0 0) substrate were deposited by DC-magnetron sputtering. The effect of substrate temperature on the microstructural morphologies of the films was characterized by using field emission-based scanning electron microscopy/electron back scattered difffraction (FE-SEM/EBSD) and atomic force microscopy (AFM). X-ray diffraction was used to characterize the phases and crystallite size of the Ti films and it was observed that according to the first figure of this article: (0 0 2) orientation increases from 200 °C and it changes into (1 0 1) orientation from 300 °C. The SEM analysis of the Ti films, deposited in Ar atmosphere, showed two- and three-dimensional hexagonal structure of the grains at the substrate temperature of 200 °C and >200 °C, respectively. The increase in grain size of Ti films with the substrate temperature was confirmed by EBSD and AFM characterization. The average surface roughness of the Ti films has increased with increase in substrate temperature as evident from the AFM study.  相似文献   

7.
In this work, copper oxide films were deposited at different substrate temperatures of 200, 250, 300 and 350 ± 5 °C by ultrasonic spray pyrolysis technique and the effect of substrate temperature on the structural, surface, optical and electrical properties of the films was presented. The film structures were studied by X-ray diffraction (XRD). To obtain information about structural properties in detail, the grain size (D), dislocation density (δ) and lattice parameters (a = b = c for cubic structure) for preferential orientations were calculated. The surface properties and elemental analyses were characterised using scanning electron microscopy and energy dispersive X-ray spectroscopy, respectively. Optical properties of the films were analyzed by transmission, linear absorption coefficient and reflection spectra, and the optical method was used to determine the band gaps of the films. The current–voltage values were measured with two-probe technique, and the electrical conductivities were calculated. Consequently, it was determined that substrate temperature has a strong effect on the structural, surface, optical and electrical properties of copper oxide films.  相似文献   

8.
Presented in this study are crystalline structure and mechanical properties of FePt0.75Pd0.25 ternary alloy thin films deposited under the various annealing temperatures, obtained by means of transmission electron microscopy (TEM) and nanoindentation techniques. FePtPd ternary alloy thin films are deposited on Si substrates using a multi-target DC magnetron sputtering system. Results indicate that the grain size increase from 40 to 135 nm as the annealing temperature increases from 400 to 600 °C. From nanoindentation measurements, the hardness of FePtPd ternary alloy thin films are 11.6 ± 0.4, 10.4 ± 0.1 and 8.8 ± 0.3 GPa for the annealed temperatures of 400, 500 and 600 °C, respectively. And, the corresponding Young's moduli are 175.4, 152.2 and 142.6 GPa, respectively. Hardness for FePtPd ternary alloy thin films decreased slightly in accordance with the increase of the grain size. By fitting experimental results with the Hall-Petch equation, a probable lattice friction stress of 5.15 ± 0.05 GPa and Hall-Petch constant of 44.25 ± 2.55 GPa nm1/2 are obtained.  相似文献   

9.
A simple laboratory technique for the routine preparation of antimony-doped tin oxide (ATO) on float glass substrates (25 mm × 76 mm × 1 mm) was described. As-prepared thin films were dried at temperature of 100 ± 5 °C and annealed at temperatures of 400–550 °C. Microstructural and morphological analyses of as-prepared films were performed at different conditions. The evolution of grain size and the morphologies of ATO films were analyzed by means of atom force microscopy (AFM) and digital microscope. The studies suggested that higher Sb-doped level and higher annealing temperature led to a decrease in the surface roughness of the deposited films. The XRD patterns revealed that as-prepared ATO films were in the crystallization of a tetragonal rutile structure of SnO2 with highly (1 1 0) preferred orientation. Their optical properties were analyzed by U-3310 spectrophotometer. The transmission of the ATO thin films was obtained as high as 80–90% in visible region, but decreased substantially in IR region. The sheet resistance of the investigated thin films was determined by four-probe method, showing that it was about 85–100 Ω □−1which decreased with the increase of antimony-doped concentration.  相似文献   

10.
In this investigation, Fe3Mo3C ternary carbide was synthesized from the elemental powders of 3Mo/3Fe/C by mechanical milling and subsequent heat treatment. Structural and morphological evolutions of powders were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that no phase transformation occurs during milling. A nanostructure Mo (Fe) solid solution obtained after 30 h of milling. With increasing milling time to 70 h no change takes place except grain size reduction to 9 nm and strain enhancement to 0.86%. Milled powders have spheroid shape and very narrow size distribution about 2 μm at the end of milling. Fe3Mo3C was synthesized during annealing of 70 h milled sample at 700 °C. Undesired phases of MoOC and Fe2C form at 1100 °C. No transformation takes place during annealing of 10 h milled sample at 700 °C. Mean grain size and strain get to 69 nm and 0.23% respectively with annealing of 70 h milled sample at 1100 °C.  相似文献   

11.
X.L. Zhong  B. Li  J.B. Wang  M. Liao  H. Liao  Y.C. Zhou   《Materials Letters》2008,62(17-18):2891-2893
Mn-doped Bi3.15Nd0.85Ti3O12 (BNTM) thin films were fabricated on Pt/Ti/SiO2/Si(100) substrates by a chemical solution deposition technique and annealed at different temperatures from 650 to 800 °C. The structures of the films were analyzed using X-ray diffraction, which showed that the BNTM films exhibit polycrystalline structures and random orientations. The surface morphologies of the samples were investigated using scanning electron microscopy. The average grain size of the films increases with increasing annealing temperature. Electrical properties such as remanent polarization (2Pr) are quite dependent on the annealing temperature of BNTM films. It is found that the film annealed at 750 °C exhibits excellent ferroelectricity with a remanent polarization of 2Pr = 89.3 μC/cm2 and a coercive field of Ec = 99.2 kV/cm respectively.  相似文献   

12.
In the present research, carbon monoxide (CO) gas sensing response was studied for TiO2 thick films calcined and sintered between 700 and 900 °C. Crystalline phase, crystallite size, surface area, particle size, and amorphous content were measured for the calcined powder. Crystallinity of the powder was found to affect sensing response significantly towards CO. Anatase phase of TiO2 thick film was stable up to 900 °C however, as calcination temperature increased from 700 to 900 °C, surface area and amorphous phase content decreased. Films calcined and sintered at 700 °C showed a lower response towards CO than those calcined at 800 °C. Upon increasing the calcination temperature further, particle growth and reduced surface area hindered the sensing response. A calcination temperature of 800 °C was necessary to achieve sufficient order in the crystal structure leading to more efficient adsorption and desorption of oxygen ions on the surface of TiO2.  相似文献   

13.
Antimony doped tin oxide SnO2: Sb thin films have been fabricated by atmospheric pressure chemical vapour deposition at substrate temperature varying between 350 °C and 420 °C in a horizontal reactor, from a mixture of hydrated SnCl2, SbCl3 and O2 gas. The films were grown on glass substrates and onto polished and porous n-type silicon. Doped films fabricated with various Sb (Sb/Sn %) contents ranging from undoped 0% to 4% were characterised employing different optical characterisation techniques, like X-ray diffraction, transmittance and reflectance in the wavelength range of 300 to 2500 nm and ellipsometry. The films exhibit the usual cassiterite diffraction pattern with high crystalline structure. Examination of the surface by scanning electron microscopy (SEM) showed that the films are textured made up of many pyramidal crystallites with nanofaceted surfaces, indicating highly stabilised material. The presence of inverted pyramids indicates that the crystallites grown by coalescence. The surface morphology was found to be independent on the kind of the substrate. From X-Ray spectra and SEM observations we get the texture the lattice constant and the grain size. The optical results provide information on film thickness, optical parameters and transmittance upon antimony concentration. The microstructure of the films, the grain growth topics (nucleation, coalescence…) depend strongly on deposition conditions and doping concentration. The observed variations of both the resistivity ρ and transmittance T are correlated to antimony atoms concentration which induced variation in the microstructure and in the size of SnO2 nanograins (typically 20-40 nm). In this work, we have determined the feasibility of incorporating the correct amount of Sb atoms in tin oxide film by means of resistivity and transmission. SEM observations showed that the substrate do not affect the morphology.  相似文献   

14.
Silicon carbon nitride thin films were deposited on Si (100) substrate at room temperature by plasma assisted radio frequency magnetron sputtering. The bonding structure and properties of SiCN films irradiated by pulsed electron beams were studied by means of X-ray photoelectron spectroscopy and nano-indentation. The results showed that electron beam irradiation had a great effect on the structure and property of the films. Under sputtering gas pressure of 3.7 Pa, a transition from the (Si,C)Nx bonded structure to the (Si,C)3N4 bonded structure was found in the SiCN thin film with electron beam irradiation. At sputtering gas pressure of 6.5 Pa, the enhancement of hardness in the SiCN film after treatment with electron beam irradiation resulted from the promotion of the sp3-hybridization of carbons bonds.  相似文献   

15.
Barium titanate hafnate (BaTi1−xHfxO3, 0 ≤ x ≤ 0.25) thin films have been deposited by a chemical solution method on copper foil substrates. The films were crystallized at 900 °C and in a reducing atmosphere to prevent substrate oxidation. Perovskite phase formation was identified for each composition, accompanied by an increased pseudocubic lattice parameter. Temperature dependent dielectric measurements revealed a decreasing phase transition temperature and peak permittivity with increasing hafnium level. The decrease in permittivity resulted from grain size reduction with increasing hafnium content. Compositions containing 25 mol% barium hafnate display a deviation from Curie-Weiss behavior indicating the onset of relaxor behavior.  相似文献   

16.
The present work was made to investigate the effect of oxygen pressure of SiOx layer on the electrical properties of Ga-doped ZnO (GZO) films deposited on poly-ethylene telephthalate (PET) substrate by utilizing the pulsed-laser deposition at ambient temperature. For this purpose, the SiOx buffer layers were deposited at various oxygen pressures ranging from 13.3 to 46.7 Pa. With increasing oxygen pressure during the deposition of SiOx layer as a buffer, the electrical resistivity of GZO/SiOx/PET films gradually decreased from 7.6 × 10− 3 to 6.8 × 10− 4 Ω·cm, due to the enhanced mobility of GZO films. It was mainly due to the grain size of GZO films related to the roughened surface of the SiOx buffer layers. In addition, the average optical transmittance of GZO/SiOx/PET films in a visible regime was estimated to be ~ 90% comparable to that of GZO deposited onto a glass substrate.  相似文献   

17.
《Vacuum》2012,86(4):457-460
Silicon carbon nitride thin films were deposited on Si (100) substrate at room temperature by plasma assisted radio frequency magnetron sputtering. The bonding structure and properties of SiCN films irradiated by pulsed electron beams were studied by means of X-ray photoelectron spectroscopy and nano-indentation. The results showed that electron beam irradiation had a great effect on the structure and property of the films. Under sputtering gas pressure of 3.7 Pa, a transition from the (Si,C)Nx bonded structure to the (Si,C)3N4 bonded structure was found in the SiCN thin film with electron beam irradiation. At sputtering gas pressure of 6.5 Pa, the enhancement of hardness in the SiCN film after treatment with electron beam irradiation resulted from the promotion of the sp3-hybridization of carbons bonds.  相似文献   

18.
Nano structured carbon nitride thin films were deposited at different RF powers in the range of 50 W to 225 W and constant gas ratio of (argon: nitrogen) Ar:N2 by RF magnetron sputtering. The atomic percentage of Nitrogen: Carbon (N/C) content and impedance of the films increased from 14.36% to 22.31% and 9 × 101 Ω to 7 × 105 Ω respectively with increase in RF power. The hardness of the deposited films increased from 3.12 GPa to 13.12 GPa. The increase in sp3 hybridized C-N sites and decrease of grain size with increase in RF power is responsible for such variation of observed mechanical and electrical properties.  相似文献   

19.
Self-diffusion of silicon in magnetron sputtered silicon carbide films deposited on different substrates (crystalline silicon and glassy carbon) is investigated. Since crystallization of amorphous silicon carbide films strongly depends on the substrate, the diffusivity of silicon is expected to depend on the substrate as well. Isotope hetero-structures and secondary ion mass spectrometry were used for analysis. For amorphous samples an upper limit of the diffusivity of 1 × 10− 21 m2/s is derived at 1100 C°. For crystallized films diffusivities between 1350 °C and 1600 °C are found to be not significantly different for the two types of substrates. For samples deposited on glassy carbon substrates an activation enthalpy ΔHD = (8.7 ± 0.9) eV was found for the self-diffusion of Si. The consequences of our findings for crystallization are discussed.  相似文献   

20.
The martensite to austenite reversion behavior of 90% cold rolled AISI 301 stainless steel was investigated in order to refine the grain size. Cold rolled specimens were annealed at 600–900 °C, and subsequently characterized by scanning electron microscopy, X-ray diffraction, Feritscope, and hardness measurements. The effects of annealing parameters on the formation of fully-austenitic nano/submicron grained structure and the mechanisms involved were studied. It was found that annealing at 800 °C for 10 s exhibited the smallest average austenite grain size of 240 ± 60 nm with an almost fully-austenitic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号