首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 890 毫秒
1.
压缩感知理论通过从一系列非自适应线性测量中求解一个凸L_1最小化问题,从而对稀疏信号进行重构。该文基于压缩感知理论对宽带合成孔径雷达成像,利用空间目标信号成像的稀疏性,提出了一种全新的低采样率数据采集重构算法。此算法在获取雷达信号原始数据时采用压缩感知的算法,减少了原始信号数据的采样量,并且用少量的测量数据和测量孔径获得重建测量目标的信息。最后将此算法与传统的反投影成像进行了比较,其仿真试验数据表明,基于压缩感知的探地雷达成像算法比传统反向投影算法成像效果好,且所需数据量少。  相似文献   

2.
压缩感知理论在探地雷达三维成像中的应用   总被引:8,自引:2,他引:6  
该文基于探地雷达成像目标空间的稀疏特性,提出了探地雷达中的随机孔径压缩感知3维成像方法,该方法在单道数据获取中应用压缩感知减少采集数据量的同时,在x-y测量平面上随机抽取部分孔径位置进行测量,以少量的测量孔径和测量数据获得重建目标空间的足够信息,同时该文研究了噪声以及测量矩阵对算法性能的影响。结果表明,随机孔径压缩感知成像算法比传统后向投影算法所需数据量少,成像效果好,目标旁瓣小,对噪声的鲁棒性更好。  相似文献   

3.
压缩感知雷达成像技术综述   总被引:7,自引:4,他引:3  
压缩感知理论突破了传统Nyquist采样定理的限制,它基于信号的稀疏性、测量矩阵的随机性和非线性优化算法完成对信号的压缩采样和重构。这种全新的信号处理理论为克服传统雷达固有缺陷,解决传统高分辨雷达面临的高采样率、大数据量和实时处理困难等问题提供了可能。本文概述了压缩感知基本理论,详细讨论了基于压缩感知的雷达成像技术,对压缩感知在高分辨雷达成像领域中的研究现状进行了归纳和分析,应用对象包括SAR/ISAR、穿墙雷达、MIMO雷达、探地雷达等,充分体现了压缩感知在简化雷达硬件设计、弥补雷达数据缺陷、改善雷达成像质量等方面的巨大潜力,明确了研究中存在的问题,阐述了有待进一步研究的方向,并总结了压缩感知用于雷达成像的优势和缺陷。   相似文献   

4.
压缩感知在超宽带雷达成像中的应用   总被引:1,自引:0,他引:1  
利用信号的先验稀疏性,通过压缩感知(Compressive Sensing,CS)方法可以实现从少量的非适应性随机测量数据重建原始信号。将压缩感知理论应用到超宽带雷达高分辨率成像中,提出基于CS理论的二维方位-距离向成像算法,可以显著减少数据采集时间、数据量、处理时间以及节省信号带宽,并利用矢量网络分析仪(Vector Network Analyzer,VNA)测量的实验数据验证了采用时间和空间减采样数据的CS算法可以实现与传统的延迟-求和波束形成方法(Delay-Sum Beamform-ing,DSBF)相当的成像质量和分辨率。  相似文献   

5.
针对极化探地雷达( GPR)工作过程中目标成像空间的联合稀疏性,提出了一种基于多测量向量模型的极化探地雷达成像算法。在建立极化探地雷达回波信号模型的基础上,利用各极化通道测量数据的联合稀疏性将各个极化通道的测量数据等效成多测量向量( MMV ),通过多任务贝叶斯压缩感知( MT-BCS)算法对各个极化通道的测量数据进行联合处理从而实现各个极化通道对应的探测场景反射率的重建。基于时域有限差分( FDTD)法的仿真数据处理结果表明所提成像算法在目标位置重建的准确性和背景杂波抑制能力上均优于单测量向量( SMV)模型的极化探地雷达成像算法。  相似文献   

6.
卢策吾  刘小军  方广有 《电子学报》2011,39(9):2204-2206
 本文提出一种基于压缩感知的探地雷达数据压缩采集方法,实现实时的采样数据压缩,无需采集完所有数据后再压缩,采样与压缩同时进行,从而大大减小了实时采样的存储压力.探地雷达的采样信号被压缩投影到由Mersenne Twister 算法生成随机矩阵,实现压缩.该方法实现了小计算量的实时压缩,并且硬件实现简单.本文使用half-quadric的方法求解感知压缩模型中的l1凸优化,快速实现数据重构.实验表明,本文方法能将探地雷达数据压缩把到原来的1/15,大大减小实时采样存储压力.  相似文献   

7.
雷达处理是压缩感知理论重要的应用方向之一,基于压缩感知的雷达处理可以降低对回波信号的采样速率要求,并且在部分应用中也可改善处理性能。然而,压缩感知重构算法的计算复杂性限制了压缩感知理论在实际雷达信号处理中的应用,尤其是大尺度雷达数据的处理。本文提出了一种基于压缩感知的雷达信号快速重构方法,利用均匀和非均匀快速傅里叶变换运算实现了常规压缩感知重构算法中的矩阵-向量乘法运算,有效降低了重构算法的计算复杂度,加快了压缩感知雷达信号的重构速度。同时,由于引入了快速傅里叶变换运算,该方法消除了大多数常规重构算法对感知矩阵的存储需求。仿真实验验证了该方法的可行性和高效性。   相似文献   

8.
王伟  张斌  李欣 《电子与信息学报》2016,38(10):2415-2422
多输入多输出(MIMO)雷达作为一种新型的雷达体制,其成像兼具高分辨率与实时性的优点。由于观测区域的稀疏性,MIMO雷达成像可以用压缩感知的方法进行处理。而现有的MIMO雷达稀疏成像的贪婪恢复算法中,正交匹配追踪算法(OMP)存在成像图像有伪影的缺点,子空间追踪算法(SP)则受到低分辨率的困扰。针对上述问题,该文提出一种称为混合匹配追踪算法的压缩感知贪婪算法以实现MIMO雷达稀疏成像。通过将两种贪婪恢复算法结合起来,利用OMP 算法选择基信号的正交性和SP 算法具有基信号选择的回溯策略,来重构出高分辨率且没有伪影的雷达图像。仿真实验验证了所提算法的有效性。  相似文献   

9.
利用多角度 SAR 数据实现目标高分辨率3维成像对雷达自动目标识别具有重要价值。该文在目标散射稀疏性前提下提出了基于压缩感知的多角度SAR 3维成像方法。文章首先论证多角度SAR测量能够改善测量矩阵的互不相关性。然后根据互不相干影响因素分析,合理选择目标离散间隔构造多角度 SAR 测量矩阵。最后利用分段正交匹配追踪算法实现目标向量的稀疏重构。该文算法不仅改善了高度分辨率,而且克服了多角度 SAR空间采样不连续导致的高旁瓣问题。实验验证了该算法的可行性和稳定性。  相似文献   

10.
基于压缩转发的协作MIMO雷达成像算法   总被引:1,自引:1,他引:0  
以实现地面目标的快速、高分辨率成像为目的,本文提出了一种基于压缩感知和协作通信技术的解决方案。在分析压缩感知理论和传统协作MIMO雷达成像算法的基础上,提出了基于匹配滤波器的协作MIMO雷达回波信号的稀疏表示方法和用于恢复重构的基函数,并建立了基于压缩转发的协作MIMO雷达系统模型。该系统主要由收发雷达、转发节点和压缩感知成像处理中心组成,转发节点利用模拟/信息转换(AIC)测量框架将雷达回波数据压缩后转发,压缩感知成像处理中心接收到各转发节点转发的数据后,利用正交匹配追踪算法(OMP)进行距离向压缩和方位向压缩,从而实现快速、高分辨率成像。仿真结果表明,该方法比传统MIMO雷达对各转发节点的传输负荷要求低,成像速度快,目标旁瓣低,成像效果好。   相似文献   

11.
压缩传感(CS)理论是在已知信号具有稀疏性或可压缩性的条件下对信号数据进行采集、编解码的新理论。压缩传感采用非自适应线性投影来保持信号的原始结构,能通过数值最优化问题准确重构原始信号。压缩传感以远低于奈奎斯特频率进行采样,在高分辨压缩成像系统、视频图像采集系统、雷达成像以及MRI医疗成像等领域有着广阔的应用前景。阐述了压缩传感理论框架以及信号稀疏表示、CS编解码模型,并进行了压缩传感与探地雷达联合反演目标成像。反演结果表明,随机孔径压缩传感成像算法比递归反向投影算法和最小二乘法所需数据量少,成像效果好,目标旁瓣小,对噪声的鲁棒性更好。  相似文献   

12.
4维合成孔径雷达获取的观测数据在基线-时间平面非均匀分布。若采用传统成像方法来获取目标散射体的高度-速率维像,则因强副瓣存在,成像效果不理想。当信号具有稀疏性时,压缩感知技术能够利用少量的信号投影值就可实现信号的准确或近似重构。然而标准的压缩感知成像方法是针对实数据进行处理,4维合成孔径雷达成像处理的数据为复数据。因此该文提出了一种基于幅度和相位迭代重建的4维合成孔径雷达成像方法。将4维合成孔径雷达高度-速率成像问题转化为目标复散射系数的幅度和相位联合重建问题,通过在成像过程中引入相位信息来改善成像质量。仿真结果验证了该算法的有效性。   相似文献   

13.
压缩感知理论是近年来提出的一种基于信号稀疏性的新兴采样理论。与通常的数据采样定理不同,该理论提出可以用远远少于传统采样定理所需的采样点数或观测点数恢复出原信号或图像。本文主要阐述了压缩感知中信号的稀疏表示、测量矩阵的设计及信号的重构算法等基本理论,论述了该理论的广阔应用前景。  相似文献   

14.
The model of inherent connection between underdetermined blind signal separation and compressed sensing (CS) is analyzed first; then, the mathematical model of underdetermined blind signal reconstruction is built using CS. More specifically, the mixing matrix is estimated by exploiting the wavelet packet transform and k-means clustering methods up to permutation and scaling indeterminacy, and then, the measurement matrix and the measurement equation are obtained. To reconstruct the underdetermined sparse source signals, the proposed semi-blind compressed reconstruction algorithm is derived based on the blind signal reconstruction model and compressive sampling matching pursuit (CoSaMP) method. Our simulation results demonstrate that the proposed scheme is effective, irrespective of artificial data or real data. Moreover, the proposed scheme can be adjusted for different applications by modifying the mixing matrix estimation method and CoSaMP method with respect to the correspondence conditions.  相似文献   

15.
在基于压缩感知理论的逆合成孔径雷达成像过程中,利用正交匹配追踪算法进行信号重构时存在重构精度较低、运算速度较慢的缺点,针对上述问题,提出了一种利用改进正交匹配追踪算法进行信号重构的稀疏孔径高分辨成像方法。首先,构造数据选择矩阵作为测量矩阵模拟回波缺失情况,然后利用稀疏基矩阵对回波信号进行稀疏表示,最后采取一种改进正交匹配追踪算法进行图像重构,相比于正交匹配追踪算法同时提高了运算速度和成像质量。通过仿真实验,在稀疏孔径数据随机缺失的情况下,改变数据缺失率,将该算法与距离-多普勒算法和正交匹配追踪算法的成像结果进行对比,验证了该算法的有效性和优越性。  相似文献   

16.
多重测量矢量模型下的稀疏步进频率SAR成像算法   总被引:2,自引:0,他引:2  
基于压缩感知(Compressed Sensing, CS)的合成孔径雷达(SAR)成像算法可以用低于Nyquist采样率的采样数据完成稀疏目标高分辨成像。然而已有的算法在重构1维距离像时采用的大都是单重测量矢量(Single Measurement Vectors, SMV)模型,存在着重构耗时长、受噪声干扰大的缺点。该文从压缩感知的多重测量矢量(Multiple Measurement Vectors, MMV)模型出发,利用多重测量矢量恢复具有相同稀疏结构的联合稀疏目标信号源,从理论与实验角度分析了基于MMV模型的SAR 1维距离像成像性能,提出了一种距离向基于MMV模型,方位向基于SMV模型的2维SAR成像算法。该算法从耗时上、重构精度上均优于SMV模型下的CS成像算法。通过对仿真数据和地基雷达实测数据的处理,验证了算法的有效性。  相似文献   

17.
针对如何大幅压缩SAR海量数据并获得有效的重构结果以完成SAR场景目标的高分辨成像问题,本文提出利用压缩感知(Compressed Sensing, CS)和Linde-Buzo-Gray (LBG)算法共同完成。对于SAR所接收到的回波信号,首先依据CS理论构造随机高斯噪声观测矩阵对回波信号进行降维处理,然后,利用LBG算法对CS压缩后的数据再进行压缩编码以达到进一步大幅压缩的目的。对于数据重构问题,同样分为两步:一是利用LBG算法编码的逆过程进行解码恢复,二是依据CS理论利用平滑L0(smooth L0, SL0)算法重构原始回波信号。在此基础上,再利用传统频率变标(Frequency Scaling, FS)SAR成像算法进行高分辨成像。仿真结果证明了本文方法的有效性。   相似文献   

18.
基于傅里叶变换的传统逆合成孔径雷达(ISAR)成像方法存在数据存储量大、数据采集时间长的问题.压缩感知(CS)理论利用图像的稀疏性,可以利用有限的数据恢复图像,这极大降低了数据采集成本.但对于多维数据,传统压缩感知方法要将多维数据转化成一维向量,这造成了很大存储和计算负担.因此,该文提出一种基于多维度-交替方向乘子法(...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号