首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of minimizing communication in a distributed networked system is considered in a discrete-event formalism where the system is modeled as a finite-state automaton. The system consists of a central station and a set of N local agents, each observing a set of local events. The central station needs to know exactly the state of the system, whereas local agents need to disambiguate certain pre-specified pairs of states for purposes of control or diagnosis. This requirement is achieved by communication, which occurs only between the central station and the local agents but not among the local agents. A communication policy is defined as a set of event occurrences to be communicated between the central station and the local agents. A communication policy is said to be minimal if any removal of communication of event occurrences will affect the correctness of the solution. Under an assumption on the absence of cycles (other than self-loops) in the system model, this paper presents an algorithm that computes a minimal communication policy in polynomial time in all parameters of the system. These results improve upon previous algorithms for solving minimum communication problems.
Feng LinEmail:

Weilin Wang   received M.S. and Ph.D. degrees in Electrical Engineering: Systems from the University of Michigan, Ann Arbor, in 2003 and 2007, respectively. He received a M.S.E. in Industrial Engineering, also from the University of Michigan, Ann Arbor, in 2006. He is currently a postdoctoral research fellow in the Department of Electrical Engineering and Computer Science at the University of Michigan, Ann Arbor. Prior to enrolling at the University of Michigan, Ann Arbor, he worked for the Zhejiang Department of Transportation, Hangzhou, China. His research interests are in optimization algorithms, discrete event systems, networked control systems, coverage and mobility for wireless sensor networks, and energy efficient wireless networking. Stéphane Lafortune   received the B. Eng degree from Ecole Polytechnique de Montréal in 1980, the M. Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of California at Berkeley in 1986, all in electrical engineering. Since September 1986, he has been with the University of Michigan, Ann Arbor, where he is a Professor of Electrical Engineering and Computer Science. Dr. Lafortune is a Fellow of the IEEE (1999). He received the Presidential Young Investigator Award from the National Science Foundation in 1990 and the George S. Axelby Outstanding Paper Award from the Control Systems Society of the IEEE in 1994 (for a paper co-authored with S. L. Chung and F. Lin) and in 2001 (for a paper co-authored with G. Barrett). At the University of Michigan, he received the EECS Department Research Excellence Award in 1994–1995, the EECS Department Teaching Excellence Award in 1997–1998, and the EECS Outstanding Achievement Award in 2003–2004. Dr. Lafortune is a member of the editorial boards of the Journal of Discrete Event Dynamic Systems: Theory and Applications and of the International Journal of Control. His research interests are in discrete event systems modeling, diagnosis, control, and optimization. He is co-developer of the software packages DESUMA and UMDES. He co-authored, with C. Cassandras, the textbook Introduction to Discrete Event Systems—Second Edition (Springer, 2007). Recent publications and software tools are available at the Web site . Feng Lin   received his B.Eng. degree in electrical engineering from Shanghai Jiao-Tong University, Shanghai, China, in 1982, and his M.A.Sc. and Ph.D. degrees in electrical engineering from the University of Toronto, Toronto, Canada, in 1984 and 1988, respectively. From 1987 to 1988, he was a postdoctoral fellow at Harvard University, Cambridge, MA. Since 1988, he has been with the Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan, where he is currently a professor. His research interests include discrete-event systems, hybrid systems, robust control, and image processing. He was a consultant for GM, Ford, Hitachi and other auto companies. Dr. Lin co-authored a paper with S. L. Chung and S. Lafortune that received a George Axelby outstanding paper award from IEEE Control Systems Society. He is also a recipient of a research initiation award from the National Science Foundation, an outstanding teaching award from Wayne State University, a faculty research award from ANR Pipeline Company, and a research award from Ford. He was an associate editor of IEEE Transactions on Automatic Control.   相似文献   

2.
This paper addresses the problem of fault detection and isolation for a particular class of discrete event dynamical systems called hierarchical finite state machines (HFSMs). A new version of the property of diagnosability for discrete event systems tailored to HFSMs is introduced. This notion, called L1-diagnosability, captures the possibility of detecting an unobservable fault event using only high level observations of the behavior of an HFSM. Algorithms for testing L1-diagnosability are presented. In addition, new methodologies are presented for studying the diagnosability properties of HFSMs that are not L1-diagnosable. These methodologies avoid the complete expansion of an HFSM into its corresponding flat automaton by focusing the expansion on problematic indeterminate cycles only in the associated extended diagnoser.
Stéphane LafortuneEmail:

Andrea Paoli   received the master degree in Computer Science Engineering and the Ph.D. in Automatic Control and Operational Research from the University of Bologna in 2000 and 2003 respectively. He currently holds a Post Doc position at the Department of Electronics, Computer Science and Systems (DEIS) at the University of Bologna, Italy. He is a member of the Center for Research on Complex Automated Systems (CASY) Giuseppe Evangelisti. From August to January 2002, and in March 2005 he held visiting positions at the Department of Electrical Engineering and Computer Science at The University of Michigan, Ann Arbor. In July 2005 he won the prize IFAC Outstanding AUTOMATICA application paper award for years 2002-2005 for the article by Claudio Bonivento, Alberto Isidori, Lorenzo Marconi, Andrea Paoli titled Implicit fault-tolerant control: application to induction motors appeared on AUTOMATICA issue 30(4). Since 2006 he is a member of the IFAC Technical Committee on Fault Detection, Supervision and Safety of Technical Processes (IFAC SAFEPROCESS TC). His current research interests focus on Fault Tolerant Control and Fault Diagnosis in distributed systems and in discrete event systems and on industrial automation software architectures following an agent based approach. His theoretical background includes also nonlinear control and output regulation using geometric approach. Stéphane Lafortune   received the B. Eng degree from Ecole Polytechnique de Montréal in 1980, the M. Eng. degree from McGill University in 1982, and the Ph.D. degree from the University of California at Berkeley in 1986, all in electrical engineering. Since September 1986, he has been with the University of Michigan, Ann Arbor, where he is a Professor of Electrical Engineering and Computer Science. Dr. Lafortune is a Fellow of the IEEE (1999). He received the Presidential Young Investigator Award from the National Science Foundation in 1990 and the George S. Axelby Outstanding Paper Award from the Control Systems Society of the IEEE in 1994 (for a paper co-authored with S. L. Chung and F. Lin) and in 2001 (for a paper co-authored with G. Barrett). At the University of Michigan, he received the EECS Department Research Excellence Award in 1994–1995, the EECS Department Teaching Excellence Award in 1997–1998, and the EECS Outstanding Achievement Award in 2003–2004. Dr. Lafortune is a member of the editorial boards of the Journal of Discrete Event Dynamic Systems: Theory and Applications and of the International Journal of Control. His research interests are in discrete event systems modeling, diagnosis, control, and optimization. He is co-developer of the software packages DESUMA and UMDES. He co-authored, with C. Cassandras, the textbook Introduction to Discrete Event Systems—Second Edition (Springer, 2007). Recent publications and software tools are available at the Web site .   相似文献   

3.
The original definition of the problem of optimal node visitation (ONV) in acyclic stochastic digraphs concerns the identification of a routing policy that will enable the visitation of each leaf node a requested number of times, while minimizing the expected number of the graph traversals. The original work of Bountourelis and Reveliotis (2006) formulated this problem as a Stochastic Shortest Path (SSP) problem, and since the state space of this SSP formulation is exponentially sized with respect to the number of the target nodes, it also proposed a suboptimal policy that is computationally tractable and asymptotically optimal. This paper extends the results of Bountourelis and Reveliotis (2006) to the cases where (i) the tokens traversing the graph can “split” during certain transitions to a number of (sub-)tokens, allowing, thus, the satisfaction of many visitation requirements during a single graph traversal, and (ii) there are additional visitation requirements attached to the internal graph nodes, which, however, can be served only when the visitation requirements of their successors have been fully met. In addition, the presented set of results establishes stronger convergence properties for the proposed suboptimal policies, and it provides a formal complexity analysis of the considered ONV formulations. From a practical standpoint, the extension of the original results performed in this paper enables their effective usage in the application domains that motivated the ONV problem, in the first place.
Spyros Reveliotis (Corresponding author)Email:

Theologos Bountourelis   received his Ph.D. in Industrial Engineering at the Georgia Institute of Technology. He also holds a M.Sc. degree in Operations Research. Dr. Bountourelis’ research interest is in the area of stochastic control theory, machine learning theory and their applications in various technological contexts. Spyros Reveliotis   is an Associate Professor in the School of Industrial & Systems Engineering, at the Georgia Institute of Technology. He holds a Ph.D. degree in Industrial Engineering from the University of Illinois at Urbana-Champaign, and an MS degree in Electrical and Computer Engineering from the Northeastern University, Boston. Dr. Reveliotis’ research interests are in the area of Discrete Event Systems theory and its applications. He is a Senior member of IEEE and a member of INFORMS. He has been an Associate Editor for IEEE Trans. on Robotics and Automation, an Area Editor for the Journal of Intelligent and Robotics Systems, and currently he serves as an Associate Editor for IEEE Trans. on Automatic Control and IEEE Trans. on Automation Science and Engineering. He is also the Program Chair for the 2009 IEEE Conference on Automation Science and Engineering (IEEE CASE 2009). Dr. Reveliotis is also a member of the IFAC Technical Committee for Discrete Event Systems and of the College-Industry Council for Material Handling Education. Finally, he has been the recipient of a number of awards, including the 1998 EEE Intl. Conf. on Robotics & Automation Kayamori Best Paper Award.   相似文献   

4.
In this paper, we propose an unstructured platform, namely I nexpensive P eer-to- P eer S ubsystem (IPPS), for wireless mobile peer-to-peer networks. The platform addresses the constraints of expensive bandwidth of wireless medium, and limited memory and computing power of mobile devices. It uses a computationally-, memory requirement- and communication- wise inexpensive gossip protocol as the main maintenance operation, and exploits location information of the wireless nodes to minimize the number of link-level messages for communication between peers. As a result, the platform is not only lightweight by itself, but also provides a low cost framework for different peer-to-peer applications. In addition, further enhancements are introduced to enrich the platform with robustness and tolerance to failures without incurring any additional computational and memory complexity, and communication between peers. In specific, we propose schemes for a peer (1) to chose a partner for a gossip iteration, (2) to maintain the neighbors, and (3) to leave the peer-to-peer network. Simulation results are given to demonstrate the performance of the platform.
Qian ZhangEmail:

Mursalin Akon   received his B.Sc.Engg. degree in 2001 from the Bangladesh University of Engineering and Technology (BUET), Bangladesh, and his M.Comp.Sc. degree in 2004 from the Concordia University, Canada. He is currently working towards his Ph.D. degree at the University of Waterloo, Canada. His current research interests include peer-to-peer computing and applications, network computing, and parallel and distributed computing. Xuemin Shen   received the B.Sc. (1982) degree from Dalian Maritime University (China) and the M.Sc. (1987) and Ph.D. degrees (1990) from Rutgers University, New Jersey (USA), all in electrical engineering. He is a Professor and the Associate Chair for Graduate Studies, Department of Electrical and Computer Engineering, University of Waterloo, Canada. His research focuses on mobility and resource management in wireless/wired networks, wireless security, ad hoc and sensor networks, and peer-to-peer networking and applications. He is a co-author of three books, and has published more than 300 papers and book chapters in different areas of communications and networks, control and filtering. Dr. Shen serves as the Technical Program Committee Chair for IEEE Globecom’07, General Co-Chair for Chinacom’07 and QShine’06, the Founding Chair for IEEE Communications Society Technical Committee on P2P Communications and Networking. He also serves as the Editor-in-Chief for Peer-to-Peer Networking and Application; founding Area Editor for IEEE Transactions on Wireless Communications; Associate Editor for IEEE Transactions on Vehicular Technology; KICS/IEEE Journal of Communications and Networks, Computer Networks; ACM/Wireless Networks; and Wireless Communications and Mobile Computing (Wiley), etc. He has also served as Guest Editor for IEEE JSAC, IEEE Wireless Communications, and IEEE Communications Magazine. Dr. Shen received the Excellent Graduate Supervision Award in 2006, and the Outstanding Performance Award in 2004 from the University of Waterloo, the Premier’s Research Excellence Award (PREA) in 2003 from the Province of Ontario, Canada, and the Distinguished Performance Award in 2002 from the Faculty of Engineering, University of Waterloo. Dr. Shen is a registered Professional Engineer of Ontario, Canada. Sagar Naik   received his BS, M. Tech., M. Math., and Ph.D. degrees from Sambalpur University (India), Indian Institute of Technology, University of Waterloo, and Concordia University, respectively. From June 1993 to July 1999 he was on the Faculty of Computer Science and Engineering at the University of Aizu, Japan, as an Assistant and Associate Professor. At present he is an Associate Professor in the Department of Electrical and Computer Engineering, University of Waterloo. His research interests include mobile communication and computing, distributed and network computing, multimedia synchronization, power-aware computing and communication. Ajit Singh   received the B.Sc. degree in electronics and communication engineering from the Bihar Institute of Technology (BIT), Sindri, India, in 1979 and the M.Sc. and Ph.D. degrees from the University of Alberta, Edmonton, AB, Canada, in 1986 and 1991, respectively, both in computing science. From 1980 to 1983, he worked at the R&D Department of Operations Research Group (the representative company for Sperry Univac Computers in India). From 1990 to 1992, he was involved with the design of telecommunication systems at Bell-Northern Research, Ottawa, ON, Canada. He is currently an Associate Professor at Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada. His research interests include network computing, software engineering, database systems, and artificial intelligence. Qian Zhang   received the B.S., M.S., and Ph.D. degrees from Wuhan University, Wuhan, China, in 1994, 1996, and 1999, respectively, all in computer science. In July 1999, she was with Microsoft Research, Asia, Beijing, China, where she was the Research Manager of the Wireless and Networking Group. In September 2005, she joined Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, as an Associate Professor. She has published about 150 refereed papers in international leading journals and key conferences in the areas of wireless/Internet multimedia networking, wireless communications and networking, and overlay networking. She is the inventor of about 30 pending patents. Her current research interests are in the areas of wireless communications, IP networking, multimedia, P2P overlay, and wireless security. She also participated in many activities in the IETF ROHC (Robust Header Compression) WG group for TCP/IP header compression. Dr. Zhang is an Associate Editor for the IEEE Transactions on Wireless Communications, IEEE Transactions on Multimedia, IEEE Transactions on Vehicular Technologies, and Computer Communications. She also served as the Guest Editor for a Special Issue on Wireless Video in the IEEE Wireless Communication Magazine and is serving as a Guest Editor for a Special Issue on Cross Layer Optimized Wireless Multimedia Communication in the IEEE Journal on Selected Areas in Communications. She received the TR 100 (MIT Technology Review) World’s Top Young Innovator Award. She also received the Best Asia Pacific (AP) Young Researcher Award from the IEEE Communication Society in 2004. She received the Best Paper Award from the Multimedia Technical Committee (MMTC) of IEEE Communication Society. She is the Chair of QoSIG of the Multimedia Communication Technical Committee of the IEEE Communications Society. She is also a member of the Visual Signal Processing and Communication Technical Committee and the Multimedia System and Application Technical Committee of the IEEE Circuits and Systems Society.   相似文献   

5.
A linear programming formulation of the optimal stopping problem for Markov decision processes is approximated using linear function approximation. Using this formulation, a reinforcement learning scheme based on a primal-dual method and incorporating a sampling device called ‘split sampling’ is proposed and analyzed. An illustrative example from option pricing is also included.
Tarun PrabhuEmail:

Vivek S. Borkar   is a Senior Professor with the Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India. Jervis Pinto   was with St. Francis Institute of Technology, Mumbai 400103, India. He is currently with the School of Electrical Engg. and Computer Science, Oregon State University, Corvallis, OR 97331, USA, pursuing graduate studies in computer science. Tarun Prabhu   was also with St. Francis Institute of Technology, Mumbai 400103, India. He is currently with the School of Computing, University of Utah, Salt Lake City, UT 84112, USA, pursuing graduate studies in computer science.   相似文献   

6.
We propose a practical defect prediction approach for companies that do not track defect related data. Specifically, we investigate the applicability of cross-company (CC) data for building localized defect predictors using static code features. Firstly, we analyze the conditions, where CC data can be used as is. These conditions turn out to be quite few. Then we apply principles of analogy-based learning (i.e. nearest neighbor (NN) filtering) to CC data, in order to fine tune these models for localization. We compare the performance of these models with that of defect predictors learned from within-company (WC) data. As expected, we observe that defect predictors learned from WC data outperform the ones learned from CC data. However, our analyses also yield defect predictors learned from NN-filtered CC data, with performance close to, but still not better than, WC data. Therefore, we perform a final analysis for determining the minimum number of local defect reports in order to learn WC defect predictors. We demonstrate in this paper that the minimum number of data samples required to build effective defect predictors can be quite small and can be collected quickly within a few months. Hence, for companies with no local defect data, we recommend a two-phase approach that allows them to employ the defect prediction process instantaneously. In phase one, companies should use NN-filtered CC data to initiate the defect prediction process and simultaneously start collecting WC (local) data. Once enough WC data is collected (i.e. after a few months), organizations should switch to phase two and use predictors learned from WC data.
Justin Di StefanoEmail:

Burak Turhan   received his PhD degree from the department of Computer Engineering at Bogazici University. He recently joined in NRC-Canada IIT-SEG as a Research Associate after six years of research assistant experience in Bogazici University. His research interests include all aspects of software quality and are focused on software defect prediction models. He is a member of IEEE, IEEE Computer Society and ACM SIGSOFT. Tim Menzies   (tim@menzies.us) has been working on advanced modeling, software engineering, and AI since 1986. He received his PhD from the University of New South Wales, Sydney, Australia and is the author of over 160 refereeed papers. A former research chair for NASA, Dr. Menzies is now a associate professor at the West Virginia University’s Lane Department of Computer Science and Electrical Engineering. For more information, visit his web page at . Ayşe B. Bener   is an assistant professor and a full time faculty member in the Department of Computer Engineering at Bogazici University. Her research interests are software defect prediction, process improvement and software economics. Bener has a PhD in information systems from the London School of Economics. She is a member of the IEEE, the IEEE Computer Society and the ACM. Justin Di Stefano   is currently the Software Technical Lead for Delcan, Inc. in Vienna, Virginia, specializing in transportation management and planning. He earned his Master’s degree in Electrical Engineering (with a specialty area of Software Engineering) from West Virginia University in 2007. Prior to his current employment he worked as a researcher for the WVU/NASA Space Grant program where he helped to develop a spin-off product based upon research into static code metrics and error prone code prediction. His undergraduate degrees are in Electrical Engineering and Computer Engineering, both from West Virginia University, earned in the fall of 2002. He has numerous publications on software error prediction, static code analysis and various machine learning algorithms.   相似文献   

7.
This paper focuses on the performance evaluation of complex man-made systems, such as assembly lines, electric power grid, traffic systems, and various paper processing bureaucracies, etc. For such problems, applying the traditional optimization tool of mathematical programming and gradient descent procedures of continuous variables optimization are often inappropriate or infeasible, as the design variables are usually discrete and the accurate evaluation of the system performance via a simulation model can take too much calculation. General search type and heuristic methods are the only two methods to tackle the problems. However, the “goodness” of heuristic methods is generally difficult to quantify while search methods often involve extensive evaluation of systems at many design choices in a large search space using a simulation model resulting in an infeasible computation burden. The purpose of this paper is to address these difficulties simultaneously by extending the recently developed methodology of Ordinal Optimization (OO). Uniform samples are taken out from the whole search space and evaluated with a crude but computationally easy model when applying OO. And, we argue, after ordering via the crude performance estimates, that the lined-up uniform samples can be seen as an approximate ruler. By comparing the heuristic design with such a ruler, we can quantify the heuristic design, just as we measure the length of an object with a ruler. In a previous paper we showed how to quantify a heuristic design for a special case but we did not have the OO ruler idea at that time. In this paper we propose the OO ruler idea and extend the quantifying method to the general case and the multiple independent results case. Experimental results of applying the ruler are also given to illustrate the utility of this approach.
Zhen ShenEmail:

Zhen Shen   received the B.E. degree from Department of Automation, Tsinghua University, Beijing, China in 2004. Currently, he is a Ph.D. candidate of Center for Intelligent and Networked Systems (CFINS), Department of Automation, Tsinghua University. He was a Visiting Scholar from Oct. 2007 to Apr. 2008 at Department of Manufacturing Engineering and Center for Information and Systems Engineering, Boston University, MA, USA. He specializes in the area of the discrete event dynamic systems (DEDS) theory and applications, and the optimization of complex systems. He is a student member of IEEE. Yu-Chi Ho   received his S.B. and S.M. degrees in Electrical Engineering from M.I.T. and his Ph.D. in Applied Mathematics from Harvard University. Except for three years of full time industrial work he has been on the Harvard faculty. Since 1969 he has been Gordon McKay Professor of Engineering and Applied Mathematics. In 1988, he was appointed to the T. Jefferson Coolidge Chair in Applied Mathematics and Gordon McKay Professor of Systems Engineering at Harvard and as visiting professor to the Cockrell Family Regent’s Chair in Engineering at the University of Texas, Austin. In 2001, he retired from teaching duties at Harvard and became a Research Professor (2001–2006) and also was appointed to be a chair professor and chief scientist (part time), at the Center for Intelligent and Networked Systems (CFINS), Department of Automation, Tsinghua University, Beijing China. Qian-Chuan Zhao   received the B.E. degree in automatic control in July 1992, the B.S. degree in applied mathematics in July 1992, and the Ph.D. degree in control theory and its applications in July 1996, all from Tsinghua University, Beijing, China. He is currently a Professor and Associate Director of the Center for Intelligent and Networked Systems (CFINS), Department of Automation, Tsinghua University. He was a Visiting Scholar at Carnegie Mellon University, Pittsburgh, PA, and Harvard University, Cambridge, MA, in 2000 and 2002, respectively. He was a Visiting Professor at Cornell University, Ithaca, NY, in 2006. His research interests include discrete event dynamic systems (DEDS) theory and applications, optimization of complex systems, and wireless sensor networks. Dr. Zhao is an associate editor for the Journal of Optimization Theory and Applications.   相似文献   

8.
This paper deals with a state observation approach for Discrete Event Systems with a known behavior. The system behavior is modeled using a Time Petri Net model. The proposed approach exploits temporal constraints to assess the system state and therefore detect and determine faults given partial observability of events. The goal here is to track the system state and to identify the event scenarios which occur on the system. Our approach uses the class graph of the Time Petri Net which models the complete system behavior to develop a state observer which is a base to perform online fault detection and diagnosing.
Pascal YimEmail:

Mohamed Ghazel   is a researcher in ESTAS (Evaluation and Safety of Automated Transport Systems) research team of the INRETS (The French national institute for transport and safety research) institute. Born in Mednine (Tunisia) in 1978, he obtained in 2005 his PhD in Automatic control and industrial computer sciences at the LAGIS – Ecole Centrale de Lille/University of Lille. (France), in 2002 the Master’s degree in automatic control and industrial computer sciences from the same establishment, and in 2001 the engineer diploma in productics–logistics from the ENSAIT de Roubaix (France). Dr. Ghazel works on safety and security and develops methods of behavioural modelling, state estimation, fault detection and diagnostic from a discrete point of view while using formal (Petri Nets, State finite Automata, etc.) and semi-formal (UML, etc.) models. The main applications of his research are in manufacturing and transportation systems, with a special interest in railways (ERTMS, SELCAT, etc.). He has several publications in international journals and conferences. Armand Toguyéni   is a Professor of Computer Sciences and Discrete Events Systems (D.E.S.) at the Ecole Centrale de Lille (France). He has in charge the Department of Computer Sciences of the “Institut de Génie Informatique et Industriel de Lens”. Born in Dakar (Senegal) in 1964, he obtained in 1988 the Engineer Diploma of the “Institut Industriel du Nord” (French “Grande Ecole”) and the same year his Master Degree in Computer Sciences. He obtained a Ph.D. in Automatic control for Manufacturing and Discrete Events systems in 1992 and his “Habilitation à Diriger des Recherches” in 2001. Pr. Toguyeni’s research area is the Quality of Service (QoS) of D.E.S. More particularly one of its topic research is the design and the implementation of dependable controls for Automated Production Systems. He works more particularly on Fault Detection and Isolation techniques for Flexible Manufacturing Systems (FMS). He has developed different approaches for the diagnostic of faults based on plant items reports or the analysis of the production flows in an FMS. Pascal Yim   is Professor at the Ecole Centrale de Lille. His research are based both on concepts from discrete automatics and software engineering with a special interest on Petri Nets, constraint programming and information systems. The principal applications of his work come from design and optimisation of transport systems, in particular railways. He published several papers in international journals and conferences and was in charge of numerous industrial projects (SNCF, port fluvial de Lille, 3 Suisses France...). Pascal Yim was coordinator of francophone team on Petri Nets and responsible of the regional pole of transport security (ST2). He is also correspondent of the European excellence research network on railways (EURNEX).   相似文献   

9.
Unlabeled training examples are readily available in many applications, but labeled examples are fairly expensive to obtain. For instance, in our previous works on classification of peer-to-peer (P2P) Internet traffics, we observed that only about 25% of examples can be labeled as “P2P”or “NonP2P” using a port-based heuristic rule. We also expect that even fewer examples can be labeled in the future as more and more P2P applications use dynamic ports. This fact motivates us to investigate the techniques which enhance the accuracy of P2P traffic classification by exploiting the unlabeled examples. In addition, the Internet data flows dynamically in large volumes (streaming data). In P2P applications, new communities of peers often join and old communities of peers often leave, requiring the classifiers to be capable of updating the model incrementally, and dealing with concept drift. Based on these requirements, this paper proposes an incremental Tri-Training (iTT) algorithm. We tested our approach on a real data stream with 7.2 Mega labeled examples and 20.4 Mega unlabeled examples. The results show that iTT algorithm can enhance accuracy of P2P traffic classification by exploiting unlabeled examples. In addition, it can effectively deal with dynamic nature of streaming data to detect the changes in communities of peers. We extracted attributes only from the IP layer, eliminating the privacy concern associated with the techniques that use deep packet inspection.
Jing LiuEmail:

Bijan Raahemi   is an assistant professor at the Telfer School of Management, University of Ottawa, Canada, with cross-appointment with the School of Information Technology and Engineering. He received his Ph.D. in Electrical and Computer Engineering from the University of Waterloo, Canada, in 1997. Prior to joining the University of Ottawa, Dr. Raahemi held several research positions in Telecommunications industry, including Nortel Networks and Alcatel-Lucent, focusing on Computer Networks Architectures and Services, Dynamics of Internet Traffic, Systems Modeling, and Performance Analysis of Data Networks. His current research interests include Knowledge Discovery and Data Mining, Information Systems, and Data Communications Networks. Dr. Raahemi’s work has appeared in several peer-reviewed journals and conference proceedings. He also holds 10 patents in Data Communications. He is a senior Member of the Institute of Electrical and Electronics Engineering (IEEE), and a member of the Association for Computing Machinery (ACM). Weicai Zhong   is a post-doctoral fellow at the Telfer School of Management, University of Ottawa, Canada. He received a B.S. degree in computer science and technology from Xidian University, Xi’an, China, in 2000 and a Ph.D. in pattern recognition and intelligent systems from Xidian University in 2004. Prior to joining the University of Ottawa, Dr. Zhong was a senior statistician in SPSS Inc. from Jan. 2005 to Dec. 2007. His current research interests include Internet Traffic Identification, Data Mining, and Evolutionary Computation. He is a member of the Institute of Electrical and Electronics Engineering (IEEE). Jing Liu   is an Associate Professor with Xidian University, China. She received a B.S. degree in computer science and technology from Xidian University, Xi’an, China, in 2000, and a Ph.D. in circuits and systems from Xidian University in 2004. Her research interests include Data Mining, Evolutionary Computation, and Multiagent Systems. She is a member of the Institute of Electrical and Electronics Engineering (IEEE).   相似文献   

10.
11.
A practical approach to testing GUI systems   总被引:1,自引:0,他引:1  
GUI systems are becoming increasingly popular thanks to their ease of use when compared against traditional systems. However, GUI systems are often challenging to test due to their complexity and special features. Traditional testing methodologies are not designed to deal with the complexity of GUI systems; using these methodologies can result in increased time and expense. In our proposed strategy, a GUI system will be divided into two abstract tiers—the component tier and the system tier. On the component tier, a flow graph will be created for each GUI component. Each flow graph represents a set of relationships between the pre-conditions, event sequences and post-conditions for the corresponding component. On the system tier, the components are integrated to build up a viewpoint of the entire system. Tests on the system tier will interrogate the interactions between the components. This method for GUI testing is simple and practical; we will show the effectiveness of this approach by performing two empirical experiments and describing the results found.
James MillerEmail:

Ping Li   received her M.Sc. in Computer Engineering from the University of Alberta, Canada, in 2004. She is currently working for Waterloo Hydrogeologic Inc., a Schlumberger Company, as a Software Quality Analyst. Toan Huynh   received a B.Sc. in Computer Engineering from the University of Alberta, Canada. He is currently a PhD candidate at the same institution. His research interests include: web systems, e-commerce, software testing, vulnerabilities and defect management, and software approaches to the production of secure systems. Marek Reformat   received his M.Sc. degree from Technical University of Poznan, Poland, and his Ph.D. from University of Manitoba, Canada. His interests were related to simulation and modeling in time-domain, as well as evolutionary computing and its application to optimization problems. For three years he worked for the Manitoba HVDC Research Centre, Canada, where he was a member of a simulation software development team. Currently, Marek Reformat is with the Department of Electrical and Computer Engineering at University of Alberta. His research interests lay in the areas of application of Computational Intelligence techniques, such as neuro-fuzzy systems and evolutionary computing, as well as probabilistic and evidence theories to intelligent data analysis leading to translating data into knowledge. He applies these methods to conduct research in the areas of Software Engineering, Software Quality in particular, and Knowledge Engineering. Dr. Reformat has been a member of program committees of several conferences related to Computational Intelligence and evolutionary computing. He is a member of the IEEE Computer Society and ACM. James Miller   received the B.Sc. and Ph.D. degrees in Computer Science from the University of Strathclyde, Scotland. During this period, he worked on the ESPRIT project GENEDIS on the production of a real-time stereovision system. Subsequently, he worked at the United Kingdom’s National Electronic Research Initiative on Pattern Recognition as a Principal Scientist, before returning to the University of Strathclyde to accept a lectureship, and subsequently a senior lectureship in Computer Science. Initially during this period his research interests were in Computer Vision, and he was a co-investigator on the ESPRIT 2 project VIDIMUS. Since 1993, his research interests have been in Software and Systems Engineering. In 2000, he joined the Department of Electrical and Computer Engineering at the University of Alberta as a full professor and in 2003 became an adjunct professor at the Department of Electrical and Computer Engineering at the University of Calgary. He is the principal investigator in a number of research projects that investigate software verification and validation issues across various domains, including embedded, web-based and ubiquitous environments. He has published over one hundred refereed journal and conference papers on Software and Systems Engineering (see www.steam.ualberta.ca for details on recent directions); and currently serves on the program committee for the IEEE International Symposium on Empirical Software Engineering and Measurement; and sits on the editorial board of the Journal of Empirical Software Engineering.   相似文献   

12.
When conducting a systematic literature review, researchers usually determine the relevance of primary studies on the basis of the title and abstract. However, experience indicates that the abstracts for many software engineering papers are of too poor a quality to be used for this purpose. A solution adopted in other domains is to employ structured abstracts to improve the quality of information provided. This study consists of a formal experiment to investigate whether structured abstracts are more complete and easier to understand than non-structured abstracts for papers that describe software engineering experiments. We constructed structured versions of the abstracts for a random selection of 25 papers describing software engineering experiments. The 64 participants were each presented with one abstract in its original unstructured form and one in a structured form, and for each one were asked to assess its clarity (measured on a scale of 1 to 10) and completeness (measured with a questionnaire that used 18 items). Based on a regression analysis that adjusted for participant, abstract, type of abstract seen first, knowledge of structured abstracts, software engineering role, and preference for conventional or structured abstracts, the use of structured abstracts increased the completeness score by 6.65 (SE 0.37, p < 0.001) and the clarity score by 2.98 (SE 0.23, p < 0.001). 57 participants reported their preferences regarding structured abstracts: 13 (23%) had no preference; 40 (70%) preferred structured abstracts; four preferred conventional abstracts. Many conventional software engineering abstracts omit important information. Our study is consistent with studies from other disciplines and confirms that structured abstracts can improve both information content and readability. Although care must be taken to develop appropriate structures for different types of article, we recommend that Software Engineering journals and conferences adopt structured abstracts.
Stephen G. LinkmanEmail:

David Budgen   is a Professor of Software Engineering and Chairman of the Department of Computer Science at Durham University in the UK. His research interests include software design, design environments, healthcare computing and evidence-based software engineering. He was awarded a BSc(Hons) in Physics and a PhD in Theoretical Physics from Durham University, following which he worked as a research scientist for the Admiralty and then held academic positions at Stirling University and Keele University before moving to his present post at Durham University in 2005. He is a member of the IEEE Computer Society, the ACM and the Institution of Engineering & Technology (IET). Barbara A. Kitchenham   is Professor of Quantitative Software Engineering at Keele University in the UK. From 2004–2007, she was a Senior Principal Researcher at National ICT Australia. She has worked in software engineering for nearly 30 years both in industry and academia. Her main research interest is software measurement and its application to project management, quality control, risk management and evaluation of software technologies. Her most recent research has focused on the application of evidence-based practice to software engineering. She is a Chartered Mathematician and Fellow of the Institute of Mathematics and Its Applications, a Fellow of the Royal Statistical Society and a member of the IEEE Computer Society. Stuart M. Charters   is a Lecturer of Software and Information Technology in the Applied Computing Group, Lincoln University, NZ. Stuart received his BSc(Hons) in Computer Science and PhD in Computer Science from Durham University UK. His research interests include evidence-based software engineering, software visualisation and grid computing. Mark Turner   is a Lecturer in the School of Computing and Mathematics at Keele University, UK. His research interests include evidence-based software engineering, service-based software engineering and dynamic access control. Turner received a PhD in computer science from Keele University. He is a member of the IEEE Computer Society and the British Computer Society. Pearl Brereton   is Professor of Software Engineering in the School of Computing and Mathematics at Keele University. She was awarded a BSc degree (first class honours) in Applied Mathematics and Computer Science from Sheffield University and a PhD in Computer Science from Keele University. Her research focuses on evidence-based software engineering and service-oriented systems. She is a member of the IEEE Computer Society, the ACM, and the British Computer Society. Stephen G. Linkman   is a Senior Lecturer in the School of Computing and Mathematics at Keele University and holds an MSc from the University of Leicester. His main research interests lie in the fields of software metrics and their application to project management, quality control, risk management and the evaluation of software systems and process. He is a visiting Professor at the University of Sao Paulo in Brazil.   相似文献   

13.
We address the problem of optimizing the maintenance of continuous queries in Moving Objects Databases, when a set of pending continuous queries need to be reevaluated as a result of bulk updates to the trajectories of moving objects. Such bulk updates may happen when traffic abnormalities, e.g., accidents or road works, affect a subset of trajectories in the corresponding regions, throughout the duration of these abnormalities. The updates to the trajectories may in turn affect the correctness of the answer sets for the pending continuous queries in much larger geographic areas. We present a comprehensive set of techniques, both static and dynamic, for improving the performance of reevaluating the continuous queries in response to the bulk updates. The static techniques correspond to specifying the values for the various semantic dimensions of trigger execution. The dynamic techniques include an in-memory shared reevaluation algorithm, extending query indexing to queries described by trajectories and query reevaluation ordering based on space-filling curves. We have completely implemented our system prototype on top of an existing Object-Relational Database Management System, Oracle 9i, and conducted extensive experimental evaluations using realistic data sets to demonstrate the validity of our approach.
Peter ScheuermannEmail:

Hui Ding   received the B.E. degree in electronic engineering from Tsinghua University, Beijing, China in 2003. He is now a Ph.D. student in the deparment of electrical engineering and computer science at Northwestern University, U.S.A. His research interest is in spatio-temporal databases and data management in mobile computing. Goce Trajcevski   is a researcher at the Dept. of Electrical Engineering and Computer Science at the Northwestern University. His main interests are in the areas of mobile data management and sensor networks. He received a BS from the University of Sts. Kiril & Metodi, and the MS and PhD from the University of Illinois at Chicago. He coauthored over 25 publications, participated as a PC member of several conferences and workshops, and was ACM DiSC associate editor 2003–2005. He is a member of IEEE and ACM. Peter Scheuermann   is a Professor of Electrical Engineering and Computer Science at Northwestern University. He has held visiting professor positions with the Free University of Amsterdam, the University of Hamburg and the Swiss Federal Institute of Technology, Zurich. During 1997–1998 he served as Program Director for Operating Systems at the NSF. Dr. Scheuermann has served on the editorial board of the Communications of ACM, The VLB Journal and IEEE Transactions on Knowledge and Data Engineering. His current research interests are in parallel and distributed database systems, mobile computing, spatial databases and data mining. He has published more than 100 journal and conference papers. Peter Scheuermann is a Fellow of IEEE.   相似文献   

14.
Retrieval of Spatial Join Pattern Instances from Sensor Networks   总被引:1,自引:1,他引:0  
We study the continuous evaluation of spatial join queries and extensions thereof, defined by interesting combinations of sensor readings (events) that co-occur in a spatial neighborhood. An example of such a pattern is “a high temperature reading in the vicinity of at least four high-pressure readings”. We devise protocols for ‘in-network’ evaluation of this class of queries, aiming at the minimization of power consumption. In addition, we develop cost models that suggest the appropriateness of each protocol, based on various factors, including selectivity of query elements, energy requirements for sensing, and network topology. Finally, we experimentally compare the effectiveness of the proposed solutions on an experimental platform that emulates real sensor networks.
Spiridon BakirasEmail:

Man Lung Yiu   received the Bachelor Degree in Computer Engineering and the Ph.D. Degree in Computer Science from the University of Hong Kong in 2002 and 2006 respectively. He is currently an assistant professor at Department of Computer Science, Aalborg University. His research interests include databases and data mining, especially advanced query processing and mining techniques for complex types of data. Nikos Mamoulis   received the diploma in Computer Engineering and Informatics in 1995 from the University of Patras, Greece, and the Ph.D. degree in computer science in 2000 from the Hong Kong University of Science and Technology. Since September 2001, he has been a faculty member of the Department of Computer Science at the University of Hong Kong, currently an associate professor. In the past, he has worked as a postdoctoral researcher at the Centrum voor Wiskunde en Informatica (CWI), The Netherlands. His research interests include complex data management, data mining, advanced indexing and query processing, and constraint satisfaction problems. He has published more than 75 articles in reputable international conferences and journals and served in the program committees of numerous database and data mining conferences. Spiridon Bakiras   received his B.S. degree (1993) in Electrical and Computer Engineering from the National Technical University of Athens, his MS degree (1994) in Telematics from the University of Surrey, and his Ph.D. degree (2000) in Electrical Engineering from the University of Southern California. Currently, he is an Assistant Professor in the Department of Mathematics and Computer Science at John Jay College, CUNY. Before that, he held teaching and research positions at the University of Hong Kong and the Hong Kong University of Science and Technology. His research interests include high-speed networks, peer-to-peer systems, mobile computing, and spatial databases. He is a member of the ACM and the IEEE.   相似文献   

15.
Theory of relative defect proneness   总被引:1,自引:1,他引:0  
In this study, we investigated the functional form of the size-defect relationship for software modules through replicated studies conducted on ten open-source products. We consistently observed a power-law relationship where defect proneness increases at a slower rate compared to size. Therefore, smaller modules are proportionally more defect prone. We externally validated the application of our results for two commercial systems. Given limited and fixed resources for code inspections, there would be an impressive improvement in the cost-effectiveness, as much as 341% in one of the systems, if a smallest-first strategy were preferred over a largest-first one. The consistent results obtained in this study led us to state a theory of relative defect proneness (RDP): In large-scale software systems, smaller modules will be proportionally more defect-prone compared to larger ones. We suggest that practitioners consider our results and give higher priority to smaller modules in their focused quality assurance efforts.
Divya MathewEmail:

A. Güneş Koru   received a B.S. degree in Computer Engineering from Ege University, İzmir, Turkey in 1996, an M.S. degree in Computer Engineering from Dokuz Eylül University, İzmir, Turkey in 1998, an M.S. degree in Software Engineering from Southern Methodist University (SMU), Dallas, TX in 2002, and a Ph.D. degree in Computer Science from SMU in 2004. He is an assistant professor in the Department of Information Systems at University of Maryland, Baltimore County (UMBC). His research interests include software quality, measurement, maintenance, and evolution, open source software, bioinformatics, and healthcare informatics. Khaled El Emam   is an Associate Professor at the University of Ottawa, Faculty of Medicine and the School of Information Technology and Engineering. He is a Canada Research Chair in Electronic Health Information at the University of Ottawa. Previously Khaled was a Senior Research Officer at the National Research Council of Canada, and prior to that he was head of the Quantitative Methods Group at the Fraunhofer Institute in Kaiserslautern, Germany. In 2003 and 2004, he was ranked as the top systems and software engineering scholar worldwide by the Journal of Systems and Software based on his research on measurement and quality evaluation and improvement, and ranked second in 2002 and 2005. He holds a Ph.D. from the Department of Electrical and Electronics, King’s College, at the University of London (UK). His labs web site is: . Dongsong Zhang   is an Associate Professor in the Department of Information Systems at University of Maryland, Baltimore County. He received his Ph.D. in Management Information Systems from the University of Arizona. His current research interests include context-aware mobile computing, computer-mediated collaboration and communication, knowledge management, and open source software. Dr. Zhang’s work has been published or will appear in journals such as Communications of the ACM (CACM), Journal of Management Information Systems (JMIS), IEEE Transactions on Knowledge and Data Engineering (TKDE), IEEE Transactions on Multimedia, IEEE Transactions on Systems, Man, and Cybernetics, IEEE Transactions on Professional Communication, among others. He has received research grants and awards from NIH, Google Inc., and Chinese Academy of Sciences. He also serves as senior editor or editorial board member of a number of journals. Hongfang Liu   is currently an Assistant Professor in Department of Biostatistics, Bioinformatics, and Biomathematics (DBBB) of Georgetown University. She has been working in the field of Biomedical Informatics for more than 10 years. Her expertise in clinical informatics includes clinical information system, controlled medical vocabulary, and medical language processing. Her expertise in bioinformatics includes microarray data analysis, biomedical entity nomenclature, molecular biology database curation, ontology, and biological text mining. She received a B.S. degree in Applied Mathematics and Statistics from University of Science and Technology of China in 1994, a M.S. degree in Computer Science from Fordham University in 1998, a PhD degree in computer science at the Graduate School of City University of New York in 2002. Divya Mathew   received the BTech degree in computer science and engineering from Cochin University of Science and Technology in 2005 and the MS degree in information systems from the University of Maryland, Baltimore County in 2008. Her research interests include software engineering and privacy preserving data mining techniques.   相似文献   

16.
When building software quality models, the approach often consists of training data mining learners on a single fit dataset. Typically, this fit dataset contains software metrics collected during a past release of the software project that we want to predict the quality of. In order to improve the predictive accuracy of such quality models, it is common practice to combine the predictive results of multiple learners to take advantage of their respective biases. Although multi-learner classifiers have been proven to be successful in some cases, the improvement is not always significant because the information in the fit dataset sometimes can be insufficient. We present an innovative method to build software quality models using majority voting to combine the predictions of multiple learners induced on multiple training datasets. To our knowledge, no previous study in software quality has attempted to take advantage of multiple software project data repositories which are generally spread across the organization. In a large scale empirical study involving seven real-world datasets and seventeen learners, we show that, on average, combining the predictions of one learner trained on multiple datasets significantly improves the predictive performance compared to one learner induced on a single fit dataset. We also demonstrate empirically that combining multiple learners trained on a single training dataset does not significantly improve the average predictive accuracy compared to the use of a single learner induced on a single fit dataset.
Naeem SeliyaEmail:

Taghi M. Khoshgoftaar   is a professor of the Department of Computer Science and Engineering, Florida Atlantic University and the Director of the Empirical Software Engineering and Data Mining and Machine Learning Laboratories. His research interests are in software engineering, software metrics, software reliability and quality engineering, computational intelligence, computer performance evaluation, data mining, machine learning, and statistical modeling. He has published more than 350 refereed papers in these areas. He is a member of the IEEE, IEEE Computer Society, and IEEE Reliability Society. He was the program chair and general Chair of the IEEE International Conference on Tools with Artificial Intelligence in 2004 and 2005 respectively and is the Program chair of the 20th International Conference on Software Engineering and Knowledge Engineering (2008). He has served on technical program committees of various international conferences, symposia, and workshops. Also, he has served as North American Editor of the Software Quality Journal, and is on the editorial boards of the journals Software Quality and Fuzzy systems. Pierre Rebours   received the M.S. degree in Computer Engineering “from Florida Atlantic University, Boca Raton, FL, USA, in April, 2004.” His research interests include quality of data and data mining. Naeem Seliya   is an Assistant Professor of Computer and Information Science at the University of Michigan-Dearborn. He received his Ph.D. in Computer Engineering from Florida Atlantic University, Boca Raton, FL, USA in 2005. His research interests include software engineering, data mining and machine learning, software measurement, software reliability and quality engineering, software architecture, computer data security, and network intrusion detection. He is a member of the IEEE and the Association for Computing Machinery.   相似文献   

17.
We present a comprehensive unified modeling language (UML) statechart diagram analysis framework. This framework allows one to progressively perform different analysis operations to analyze UML statechart diagrams at different levels of model complexity. The analysis operations supported by the framework are based on analyzing Petri net models converted from UML statechart diagrams using a previously proposed transformation approach. After introducing the general framework, the paper emphasizes two simulation-based analysis operations from the framework: direct MSC inspection, which provides a visual representation of system behavior described by statechart diagrams; and a pattern-based trace query technique, which can be used to define and query system properties. Two case-study examples are presented with different emphasis. The gas station example is a simple multi-object system used to demonstrate both the visual and query-based analysis operations. The early warning system example uses only one object, but features composite states and includes analysis specifically aimed at one composite state feature, history states.
Sol M. ShatzEmail:

Jiexin Lian   is a Ph.D. candidate in computer science at the University of Illinois at Chicago. His research interests include software engineering and Petri net theory and applications. He received his B.S. in computer science from Tongji University, China. Zhaoxia Hu   received her B.S. degree in Physics from Beijing University, Beijing, China in 1990. She received the M.S. and Ph.D. degrees, in computer science, from University of Illinois at Chicago, Chicago, IL, in 2001 and 2005, respectively. She currently works for an investment research company (Morningstar, Inc.) as an application developer. Sol M. Shatz   received the B.S. degree in computer science from Washington University, St. Louis, Missouri, and the M.S. and Ph.D. degrees, also in computer science, from Northwestern University, Evanston, IL, in 1981 and 1983, respectively. He is currently a Professor of Computer Science and Associate Dean for Research and Graduate Studies in the College of Engineering at the University of Illinois at Chicago. He also serves as co-director of the Concurrent Software Systems Laboratory. His research is in the field of software engineering, with particular interest in formal methods for specification and analysis of concurrent and distributed software. He has served on the program and organizing committees of many conferences, including co-organizer of the Workshop on Software Engineering and Petri Nets held in Denmark, June 2000; program co-chair for the International Conference on Distributed Computing Systems (ICDCS), 2003; and General Chair for ICDCS 2007. He has given invited talks in the US, Japan, and China, and presented tutorials (both live and video) for the IEEE Computer Society. Dr. Shatz is a member of the Editorial Board for various technical journals, having served on the Editorial Board for IEEE Transactions on Software Engineering from 2001 to 2005. His research as been supported by grants from NSF and ARO, among other agencies and companies. He has received various teaching awards from the University of Illinois at Chicago as well as the College of Engineering’s Faculty Research Award in 2003.   相似文献   

18.
Video-on-demand service in wireless networks is one important step to achieving the goal of providing video services anywhere anytime. Typically, carrier mobile networks are used to deliver videos wirelessly. Since every video stream comes from the base station, regardless of what bandwidth sharing techniques are being utilized, the media stream system is still limited by the network capacity of the base station. The key to overcome the scalability issue is to exploit resources available at mobile clients in a peer-to-peer setting. We observe that it is common to have a carrier mobile network and a mobile peer-to-peer network co-exist in a wireless environment. A feature of such hybrid environment is that the former offers high availability assurance, while the latter presents an opportunistic use of resources available at mobile clients. Our proposed video-on-demand technique, PatchPeer, leverages this network characteristic to allow the video-on-demand system scale beyond the bandwidth capacity of the server. Mobile clients in PatchPeer are no longer passive receivers, but also active senders of video streams to other mobile clients. Our extensive performance study shows that PatchPeer can accept more clients than the current state-of-the-art technique, while maintaining the same Quality-of-Service to clients.
Fuyu LiuEmail:

Tai T. Do   is a Ph.D. student in Computer Science at the University of Central Florida, working in the Data Systems Laboratory. He received a B.S. degree in Electrical Engineering from the University of Oklahoma in 2001. His main research interests are Distributed Systems and Databases (Peer-to-Peer Systems, Distributed Monitoring Queries), Communications and Networking (Video Delivery Techniques, Wireless Communication Protocols), Decision Support Systems (Real-time Route Diversion Systems), and Security and Privacy (Anonymity for Location-based Services). Tai T. Do is a recipient of the UCF Order of Pegasus, i.e. UCF Best Student Award, class of 2008. Kien A. Hua   received the B.S. degree in Computer Science, M.S. and Ph.D. degrees in Electrical Engineering, all from the University of Illinois at Urbana-Champaign, in 1982, 1984, and 1987, respectively. Form 1987 to 1990 he was with IBM Corporation. He joined the University of Central Florida in 1990, and is currently a professor in the School of Computer Science. Dr. Hua has published widely including several papers recognized as best papers at various international conferences. He has served as Conference Chair, Vice-Chair, Associate Chair, Demo Chair, and Program Committee Member for numerous ACM and IEEE conferences. Currently, he is on the editorial boards of Journal of Multimedia Tools and Applications and International Journal of Advanced Information Technology. Dr. Hua is an IEEE Fellow. Ning Jiang   received the Ph.D. degree in Computer Science from the University of Central Florida. Currently, he is working at the Office Lab at Microsoft Corp. His main research interests are Mobile computing, Data mining, and Network security. Fuyu Liu   is a Ph.D. student in Computer Science at the University of Central Florida, working in the Data Systems Laboratory. His main research interests are Distributed Systems and Databases (Distributed Monitoring Queries, Mobile COmputing), and Security and Privacy (Anonymity for Location-based Services).   相似文献   

19.
We present an approach dealing with repeated fault events in the framework of model-based monitoring of discrete-event systems (DES). Various notions of diagnosability reported in the literature deal with uniformly bounded finite detection of counting delays over all faulty behaviors (uniform delays for brevity). The situation where the diagnosability notion of interest fails to hold under a given observation configuration leads typically to the deployment of more observational devices (e.g., sensors), which may be costly or infeasible. As an alternative to the additional deployment of observational devices, one might want to relax the uniformity of delays, while delays remain finite. To this end, we introduce a notion of diagnosability characterized with nonuniformly bounded finite counting delays (nonuniform counting delays for brevity), where finite delay bounds can vary on faulty behaviors. To evaluate the introduced notion of diagnosability with nonuniform counting delays, a polynomial-time verification algorithm is developed. Notably, the developed verification technique can readily be modified to construct a computationally superior verification algorithm for diagnosability under uniformly bounded finite counting delays (uniform counting delays for brevity) as compared to an algorithm previously reported in the literature. We also develop a novel on-line event counting algorithm that improves the time and space complexities of the currently available algorithms for the counting of special events.
Humberto E. Garcia (Corresponding author)Email:

Tae-Sic Yoo   received the B. Eng degree from Korea University, Seoul, Korea, in 1994, the M. Eng. and the Ph.D. degree from the University of Michigan, Ann Arbor, in 1999 and 2002, respectively, all in electrical engineering. Since 2002, he has been with Argonne National Laboratory-West and Idaho National Laboratory as a researcher. He was a recipient of the distinguished graduate student awards from the University of Michigan in 2003. His general research interests are in systems and control: theory and applications. His research experience includes discrete-event systems, sensor networks, empirical data-driven systems, stochastic systems, and modeling and analysis of nuclear engineering systems. Humberto E. Garcia   Humberto E. Garcia received an Ingeniero Electricista degree from the Universidad de Carabobo, Venezuela, and MS and Ph.D. degrees in Electrical and Computer Engineering (with a minor in Mechanical Engineering) from the Pennsylvania State University, USA. He is currently with Idaho National Laboratory, being previously with Argonne National Laboratory. Dr. Garcia has over sixteen years of work experience in modeling, monitoring, control, and optimization of complex dynamical systems gained from numerous research, development, and demonstration efforts. His interests include sensor networks/systems, online condition monitoring, diagnostics, and prognostics, process monitoring and event detection, supervisory control, life-extended control, anomaly tolerant/reconfigurable systems, advanced safeguards/nonproliferation, proliferation detection, and counter-proliferation, process-infrastructure analysis, computational intelligence, and decision theory applications. His current duties include group lead, Sensor and Decision Systems, and principal investigator in several projects for advanced energy systems and national security applications. Developed technologies have been successfully demonstrated not only on simulated, hardware-in-the-loop, and lab-scale experimental test beds, but also on actual engineering-scale systems. Dr. Garcia has served as chair, panel member, and technical lead in numerous technical meetings, including being an expert member to International Atomic Energy Agency (IAEA) consultancy meetings on the subject of online condition monitoring. He has over 60 technical publications and two U.S. patents.   相似文献   

20.
Eigendecomposition-based techniques are popular for a number of computer vision problems, e.g., object and pose estimation, because they are purely appearance based and they require few on-line computations. Unfortunately, they also typically require an unobstructed view of the object whose pose is being detected. The presence of occlusion and background clutter precludes the use of the normalizations that are typically applied and significantly alters the appearance of the object under detection. This work presents an algorithm that is based on applying eigendecomposition to a quadtree representation of the image dataset used to describe the appearance of an object. This allows decisions concerning the pose of an object to be based on only those portions of the image in which the algorithm has determined that the object is not occluded. The accuracy and computational efficiency of the proposed approach is evaluated on 16 different objects with up to 50% of the object being occluded and on images of ships in a dockyard.
Anthony A. MaciejewskiEmail:

Chu-Yin Chang   received the B.S. degree in mechanical engineering from National Central University, Chung-Li, Taiwan, ROC, in 1988, the M.S. degree in electrical engineering from the University of California, Davis, in 1993, and the Ph.D. degree in electrical and computer engineering from Purdue University, West Lafayette, in 1999. From 1999--2002, he was a Machine Vision Systems Engineer with Semiconductor Technologies and Instruments, Inc., Plano, TX. He is currently the Vice President of Energid Technologies, Cambridge, MA, USA. His research interests include computer vision, computer graphics, and robotics. Anthony A. Maciejewski   received the BSEE, M.S., and Ph.D. degrees from Ohio State University in 1982, 1984, and 1987. From 1988 to 2001, he was a professor of Electrical and Computer Engineering at Purdue University, West Lafayette. He is currently the Department Head of Electrical and Computer Engineering at Colorado State University. He is a Fellow of the IEEE. A complete vita is available at: Venkataramanan Balakrishnan   is Professor and Associate Head of Electrical and Computer Engineering at Purdue University, West Lafayette, Indiana. He received the B.Tech degree in electronics and communication and the President of India Gold Medal from the Indian Institute of Technology, Madras, in 1985. He then attended Stanford University, where he received the M.S. degree in statistics and the Ph.D. degree in electrical engineering in 1992. He joined Purdue University in 1994 after post-doctoral research at Stanford, CalTech and the University of Maryland. His primary research interests are in convex optimization and large-scale numerical algebra, applied to engineering problems. Rodney G. Roberts   received B.S. degrees in Electrical Engineering and Mathematics from Rose-Hulman Institute of Technology in 1987 and an MSEE and Ph.D. in Electrical Engineering from Purdue University in 1988 and 1992, respectively. From 1992 until 1994, he was a National Research Council Fellow at Wright Patterson Air Force Base in Dayton, Ohio. Since 1994 he has been at the Florida A&M University---Florida State University College of Engineering where he is currently a Professor of Electrical and Computer Engineering. His research interests are in the areas of robotics and image processing. Kishor Saitwal   received the Bachelor of Engineering (B.E.) degree in Instrumentation and Controls from Vishwakarma Institute of Technology, Pune, India, in 1998. He was ranked Third in the Pune University and was recipient of National Talent Search scholarship. He received the M.S. and Ph.D. degrees from the Electrical and Computer Engineering department, Colorado State University, Fort Collins, in 2001 and 2006, respectively. He is currently with Behavioral Recognition Systems, Inc. performing research in computer aided video surveillance systems. His research interests include image/video processing, computer vision, and robotics.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号