首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Composites Science and Technology》2006,66(11-12):1546-1557
In resin injection/compression molding (RI/CM), a preform often comprises layers of different fiber reinforcements. Each fiber reinforcement has unique through thickness and in-plane permeabilities as well as compressibility, creating a heterogeneous porous medium in the mold cavity. In the present article, numerical simulation is utilized to investigate the filling process of RI/CM in such a heterogeneous porous medium. The filling stage is simulated in a full three-dimensional space by using control volume/finite element method and based upon an appropriate filling algorithm. The flow in the open gap which may be present in the mold cavity is modeled by Darcy’s law using an equivalent permeability. Numerical simulations of filling process for preforms containing two and three layers of different reinforcements in various stacking sequences are conducted with the aid of computer code developed in this study. Results show that the injection time as well as flow front progression depends on fiber types in the whole preform, fiber stacking sequence and open gap provided in the mold cavity. Simulated results also suggest that the presence of open gap at top of reinforcement can lead to both low injection time and uniform flow pattern.  相似文献   

2.
In this paper, we present a modeling and numerical simulation of a mold filling process in resin transfer molding/structural reaction injection molding utilizing the homogenization method. Conventionally, most of the mold filling analyses have been based on a macroscopic flow model utilizing Darcy's law. While Darcy's law is successful in describing the averaged flow field within the mold cavity packed with a porous fiber preform, it requires experiments to obtain the permeability tensor and is limited to the case of porous fiber preform-it can not be used to model the resin flow through a double porous fiber preform. In the current approach, the actual flow field is considered, to which the homogenization method is applied to obtain the averaged flow model. The advantages of the current approach are: parameters such as the permeability and effective heat conductivity of the impregnanted fiber preform can be calculated; the actual flow field as well as averaged flow field can be obtained; and the resin flow through a double porous fiber preform can be modelled. In the presentation, we first derive the averaged flow model for the resin flow through a porous fiber preform and compare it with that of other methods. Next, we extend the result to the case of double porous fiber preform. An averaged flow model for the resin flow through a double porous fiber preform is derived, and a simulation program is developed which is capable of predicting the flow pattern and temperature distribution in the mold filling process. Finally, an example of a three dimensional part is provided.  相似文献   

3.
In Liquid Composite Molding (LCM) processes, a fibrous reinforcement preform is placed or draped over a mold surface, the mold is closed and a resin is either injected under pressure or infused under vacuum to cover all the spaces in between the fibers of the preform to create a composite part. LCM is used in a variety of manufacturing applications, from the aerospace to the medical industries. In this manufacturing process, the properties of the fibrous reinforcement inside the closed mold is of great concern. Preform structure, volume fraction, and permeability all influence the processing characteristics and final part integrity. When preform fabrics are draped over a mold surface, the geometry and characteristics of both the bulk fabric and fiber tow bundles change as the fabric shears to conform to the mold curvature. Numerical simulations can predict resin flow in dual scale fabrics in which one can separately track the filling of the fiber tows in addition to flow of resin within the bulk fabric. The effect of the deformation of the bulk fabric due to draping over the tool surface has been previously addressed by accounting for the change in fiber volume fraction and permeability during the filling of a mold. In this work, we investigate the effect of shearing of the fiber tows in addition to bulk deformation during the dual scale filling. We model the influence of change in fiber tow characteristics due to draping and deformation on mold filling and compare it with the results when the fiber tow deformation effect is ignored. Model experiments are designed and conducted with a dual scale fabric to characterize the change in permeability of fiber tow with deformation angle. Simulations which account for dual scale shear demonstrate that the tow saturation rate is affected, requiring longer fill times, or higher pressures to completely saturate fiber tows in areas of a mold with high local shear. This should prove useful in design of components for applications in which it is imperative to ensure that there are no unfilled fiber tows in the final fabricated component.  相似文献   

4.
LCM 充模过程中的边缘效应   总被引:1,自引:1,他引:0       下载免费PDF全文
边缘效应是复合材料液体模塑成型技术(Liquid composites molding , LCM) 中常见的纤维预成型体铺敷缺陷之一。采用单向流动法研究了边缘效应对纤维预成型体渗透率及充模过程的影响, 结合其等效渗透率的理论预测模型对不同纤维体积含量、不同缝隙宽度条件下的边缘效应进行了模拟与分析, 提出了一边缘效应强弱的表征因子, 并以一较复杂的模腔的充模过程为实例提出了对边缘效应的在线监控策略及处理方案。   相似文献   

5.
6.
Vacuum assisted resin transfer molding (VARTM) is one of the important processes to fabricate high performance composites. In this process, resin is drawn into the mold to impregnate the fiber reinforcement to a form composite. A resin distribution layer with high permeability was often introduced on top of the fiber reinforcement to accelerate the filling speed. Due to the difference of the flow resistance in the resin distribution layer and the reinforcement as well as the resulting through thickness transverse flow, the filling flow field is intrinsically three-dimensional. This study developed a two-layer model with two-dimensional formulation to simulate the filling flow of the VARTM process with a resin distribution layer. Two-dimensional flow was considered in each layer and a transverse flow in the thickness direction was estimated between the two layers. Thermal analysis including the transverse convection was also performed to better simulate the temperature distribution.  相似文献   

7.
An experimental investigation on fiber bed permeability variation with porosity for three types of reinforcement mats is performed. The reinforcements consist of plain-weave carbon, plain-weave fiberglass, and chopped fiberglass mats. Resin flow experiments are performed in a rectangular cavity with different fiber volume fractions. RL 440 epoxy resin is used as the working fluid in the experiments. Several layers of mats are laid inside the mold in each experiment and resin is injected at a constant pressure. The effects of reinforcement type and porosity on fiber bed permeability are investigated. Fiber mat permeability of woven mats show large degrees of anisotropy. Resin flow in chopped fiberglass mats is circular, suggesting an isotropic permeability tensor. In all the three cases, preform permeability increases with fiber bed porosity in a non-linear fashion. The results of this investigation could be employed in optimization of liquid composite molding manufacturing processes.  相似文献   

8.
RTM工艺注模过程边缘效应模拟分析   总被引:4,自引:2,他引:4       下载免费PDF全文
RTM工艺需将纤维预制体预置到模具中,由于纤维预制体结构不均匀性和模具形状、尺寸等影响,极易产生边缘效应。边缘效应会严重影响树脂流场发展和压力场分布。本文作者采用等效渗透系数方法模拟边缘效应,得到了其影响下的树脂流动前峰曲线和压力场。研究表明:一方面边缘效应可能导致不期望的树脂流场发展而形成工艺缺陷——干斑;另一方面可以利用边缘效应提高工艺效率:常流率注射时减小合模压力和注射压力,常压力注射时可以减少注模时间。   相似文献   

9.
Characterization of preform permeability in the presence of race tracking   总被引:2,自引:0,他引:2  
For realistic simulation of resin flow in a stationary fibrous porous preform during Liquid Composite Molding (LCM) processes, it is necessary to input accurate material data. Of great importance in simulating the filling stage of the LCM process is the preform permeability; a measure of the resistance the preform poses to the flowing fluid. One method to measure permeability values is by conducting one-dimensional flow experiments, and matching the flow behavior to known analytical models. The difficulty is the edge effects such as race tracking disrupt the flow and violate the one-dimensional flow assumption. The new approach outlined in this paper offers a methodology to obtain accurate bulk permeability values despite any race tracking that may be present along the edges of the mold containing isotropic fabrics. Further, a method of approximate equivalent isotropic scaling is explained to extend the use of this method to determine permeability of anisotropic materials with race tracking present. Both approaches are validated with computer simulations, and then utilized in laboratory experimentation. The values calculated from this approach compare well with permeability values obtained from one-dimensional permeability experiments without the presence of race tracking.  相似文献   

10.
李永静  晏石林  严飞  鲍睿 《复合材料学报》2016,33(11):2688-2697
双尺度多孔纤维预制体填充过程中延迟浸润的非饱和流动现象,对基于树脂流过区域为完全饱和区域的充模理论及模拟方法提出了挑战。通过控制体/有限单元(CV/FE)法结合沉浸函数实现了液体模塑成型工艺(LCM)中非饱和填充浸润的数值模拟,并对比了恒压下的实验结果,验证了其可靠性。分析讨论了注射口压力、流量和液体黏度对双尺度多孔纤维织物非饱和填充浸润特性的影响。结果表明:在允许误差内,该数值模拟结果可靠,可用于分析讨论各因素对双尺度多孔织物非饱和流动特性的影响;填充浸润过程中,纤维织物内部非饱和区域长度并非保持不变,而是随着填充浸润的进行经历了4个变化过程;不同注射条件下,压力、流量及黏度对非饱和流动特性影响不同。研究结果对合理控制注射条件及流体特性实现双尺度多孔纤维预制件的完全浸润具有指导意义。   相似文献   

11.
The resin transfer molding (RTM) process is used to manufacture advanced composite materials made of continuous glass or carbon fibers embedded in a thermoset polymer matrix. In this process, a fabric preform is prepared, and is then placed into a mold cavity. After the preform is compacted between the mold parts, thermoset polymer is transferred from an injection machine to the mold cavity through injection gate(s). Resin flows through the porous fabric, and eventually flows out through the ventilation port(s). After the resin cure process (cross‐linking of the polymer), the mold is opened and the part is removed. The objective of this study is to verify the application of calcium carbonate mixed in resin in the RTM process. Several rectilinear infiltration experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions of 320 × 150 × 3.6 mm, room temperature, maximum injection pressure 0.202 bar and different content of CaCO3 (10 and 40%) and particle size (mesh opening 38 and 75 µm). The results show that the use of filled resin with CaCO3 influences the preform impregnation during the RTM molding, changing the filling time and flow front position, however it is possible to make composite with a good quality and low cost.  相似文献   

12.
Decreasing the amount of residual voids during the resin infiltration into fibrous porous media is an important aspect in manufacturing high performance composite materials.In order to better understand void transports and flow behaviors in filling process,which affects immediately the final void content,a finite-element scheme for transient simulations of the void migration in a transverse flow through the uniaxial micro-structured fibrous media is developed in this work.A volume-of-fluid (VOF) method has been incorporated in the Eulerian frame to capture the free surface of the resin flow.The implementation of periodic boundary condition to the vertical direction avoids unwanted wall effect.The void migration in a dual-scale fiber tow model was investigated.The voids are observed to be transported through the inter-tow region as well as entrapped into fiber tow.It is that the motion of void lagged behind macro flow front which implies that the adequate resin bleeding after mold filling is crucial to remove the entrapped air.  相似文献   

13.
Decreasing the amount of residual voids during the resin infiltration into fibrous porous media is an important aspect in manufacturing high performance composite materials.In order to better understand void transports and flow behaviors in filling process,which affects immediately the final void content,a finite-element scheme for transient simulations of the void migration in a transverse flow through the uniaxial micro-structured fibrous media is developed in this work.A volume-of-fluid (VOF) method has been incorporated in the Eulerian frame to capture the free surface of the resin flow.The implementation of periodic boundary condition to the vertical direction avoids unwanted wall effect.The void migration in a dual-scale fiber tow model was investigated.The voids are observed to be transported through the inter-tow region as well as entrapped into fiber tow.It is that the motion of void lagged behind macro flow front which implies that the adequate resin bleeding after mold filling is crucial to remove the entrapped air.  相似文献   

14.
《Composites Part A》2007,38(6):1547-1568
To prevent dry spot formation during fabrication of composite parts by Resin Transfer Molding (RTM), a control interface and four different adaptive control algorithms have been developed and tested with numerical simulations. The interface is capable of controlling the flow pattern of resin as it fills a mold containing a preform of fiber reinforcement, provided that the mold is equipped with multiple inlet gates, a single vent and a spinal sensor system that continuously feeds the interface with the resin flow front locations along the spine lines connecting the inlet gates to the vent. Four different adaptive control algorithms targeting on injection flow rate control, injection pressure control, linearly-corrected pressure control, and the combined flow rate and linearly-corrected pressure control have been proposed and incorporated with the control interface. To provide desirable controllability of the filling process and effective utilization of the resin dispensing equipment, the final formulations were optimized by means of numerical simulations of a rectangular RTM part containing different permeability distributions. The results were compared to investigate the strengths and weaknesses of the spinal adaptive control algorithms in terms of dry spot size, filling speed, and the minimum responding speed of injection pump. Finally, a complex geometry case study was conducted to validate and highlight the spinal adaptive control algorithms’ capability in handling flow disturbance for a complex RTM mold filling process which involves irregular mold geometry, multiple inserts, significant permeability and racetracking variations, and non-straight spinal sensors.  相似文献   

15.
Numerical study of porosity in titanium dental castings   总被引:4,自引:0,他引:4  
A commercial software package, MAGMASOFT (MAGMA Giessereitechnologie GmbH, Aachen, Germany), was used to study shrinkage and gas porosity in titanium dental castings. A geometrical model for two simplified tooth crowns connected by a connector bar was created. Both mold filling and solidification of this casting model were numerically simulated. Shrinkage porosity was quantitatively predicted by means of a built-in feeding criterion. The risk of gas pore formation was investigated using the numerical filling and solidification results. The results of the numerical simulations were compared with experiments, which were carried out on a centrifugal casting machine with an investment block mold. The block mold was made of SiO2 based slurry with a 1 mm thick Zr2 face coat to reduce metal–mold reactions. Both melting and casting were carried out under protective argon (40 kPa). The finished castings were sectioned and the shrinkage porosity determined. The experimentally determined shrinkage porosity coincided with the predicted numerical simulation results. No apparent gas porosity was found in these model castings. Several running and gating systems for the above model casting were numerically simulated. An optimized running and gating system design was then experimentally cast, which resulted in porosity-free castings. © 1999 Kluwer Academic Publishers  相似文献   

16.
Pyrolytic carbon was infiltrated into porous carbon or two-dimensionally woven carbon fibre (2D-C)/SiC particulate preforms using pressure-pulsed chemical vapour infiltration from C6H6 (3–16%)–H2–N2 at 1273–1373 K. Residual porosity of porous carbon decreased from 29 to 10% after 1×104 pulses at 1323 K, and that of 2D-C/SiC particulate preform decreased from 30 to 7.5% after 4×104 pulses at 1273 K. Flexural strength of 2D-C/SiC preform reached about 150 MPa.  相似文献   

17.
In Liquid Composite Molding (LCM) processes the saturation of the reinforcement by the resin may induce the creation of porosity in the preform affecting the final properties of the composite. The purpose of this work concerns the development of an experimental protocol and the associated modeling to identify the dynamic saturation curve during filling by taking advantage of sharp contrasts of thermal properties existing between dry and fully-saturated reinforcement. To identify saturation, several injections were performed with a laboratory RTM mold for which thermal design allows accurate control of heat transfer. Several heat flux sensors were used to identify the saturation curve. Sensitivity analysis proves the feasibility of the method. The results are compared with a conductometric method with good agreement. Evolution of residual voids identified for several flow rates are also consistent with those expected according to the capillary number.  相似文献   

18.
Long-fiber thermoplastic (LFT) composites consist of an engineering thermoplastic matrix with glass or carbon reinforcing fibers that are initially 10–13 mm long. When an LFT is injection molded, flow during mold filling degrades the fiber length. Here we present a detailed quantitative model for fiber length attrition in a flowing fiber suspension. The model tracks a discrete fiber length distribution at each spatial node. A conservation equation for total fiber length is combined with a breakage rate that is based on buckling of fibers due to hydrodynamic forces. The model is combined with a mold filling simulation to predict spatial and temporal variations in fiber length distribution in a mold cavity during filling. The predictions compare well to experiments on a glass–fiber/PP LFT molding. Fiber length distributions predicted by the model are easily incorporated into micromechanics models to predict the stress–strain behavior of molded LFT materials.  相似文献   

19.
《Composites Part A》2000,31(5):439-458
In Part I, an experimental study was completed in a series of five molds, each having corners of different radii (from 0.06 to 8.0 in.). The primary goal of this work has been to determine whether corners in LCM molds significantly affect the filling process, by altering the structure of the preform locally in such regions. Consistent trends were found for each series of experiments completed in the mold, for which the same preform type, and number of layers were used. For constant flow rate injection, the required injection pressures to fill the two molds with tighter radii was significantly increased as compared to the other molds. Composite parts were manufactured in these molds, measurements made on these parts revealing design flaws, the cavity thicknesses not being equal in all sections of the molds. Several numerical simulations are presented in this paper, the goal being to separate any effects due to the varying thicknesses from effects due to the corners present. Careful simulations have been completed, taking into account the actual thicknesses in each mold, and the resulting preform volume fraction. Experimentally measured permeability data was employed, and the predicted injection pressures match very well for all four molds studied, seeming to indicate that the corners present have not affected the filling. A simple model for preform compression in corners has been developed, which predicts local permeability modifications due to in-plane compression of the fabric layers. These predictions have been employed in conjunction with an existing tool to analytically predict the permeability components of a preform in a flat cavity. This code requires from the user a geometrical model of a preform unit cell, this data being measured from samples cut from the parts manufactured. The resulting predictions for injection pressure are good for an entirely predictive approach, underpredicting experimental values by only 30–60%. Sensitivity analyses have demonstrated the strong relationship between permeability and the details of the preform cell. Two numerical studies were completed to determine how sensitive the injection pressure curves are to reduced permeabilities in the corner regions. For the two injection schemes having two different gate locations, pressures were not significantly affected, while the permeabilities in this region were reduced up to 100 times. Though the molds used were not ideal for isolating effects on mold filling due to corner radii, the evidence presented does not show the existence of any strong behavior related to mold radii.  相似文献   

20.
A new methodology is presented to simulate mold filling in resin transfer molding (RTM) using a combination of the level set and boundary element methods (BEMs). RTM is a composite manufacturing process where a liquid resin is injected in a closed rigid mold containing a dry fibrous reinforcement. Process simulation is motivated by the importance of tracking accurately the motion of the flow front during the mold filling stage. The BEM solves the equation governing the resin flow and the level set method is implemented to track the resin front in the mold. This formulation opens up new opportunities to improve RTM flow simulations and optimize injection molds. The present paper focuses on isothermal resin flow in undeformable porous medium. The implementation of the numerical algorithm is described and several examples of two-dimensional filling with single or multiple injection gates are presented. The robustness of the coupling and the ability to predict accurately the position of the front by this new model are discussed. It is also shown how dry spot formation can be tracked precisely during the simulation and how a generalization of this approach allows predicting resin flow across obstacles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号