首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ground penetrating radar detection of plastic land mines buried in lossy, dielectric soils under rough ground surfaces is only possible with wide bandwidth probing signals. Using the new semi-analytic mode matching (SAMM) algorithm, we model the ultra-wide bandwidth scattering of these low-contrast buried targets, using computed time domain signatures to facilitate detection. It is shown that differences between the characteristic time peaks of the non-specular signature are primarily dependent on the size, shape and material characteristics of the target, and less so on its burial depth, background soil, or ground surface roughness. Differences between time peaks are attributed to multiple roundtrip transit times through the target which are largely independent of the ground characteristics.In the SAMM algorithm, the frequency-dependent scattered fields are constructed from moderately low-order modal superpositions of spherical waves, each satisfying the Helmholtz equation in its respective material (air, ground, or mine). By least squares fitting, mode coefficients are found which optimally match all boundary conditions at designated points along the boundary surfaces, where the boundaries may be irregularly shaped. Spherical wave expansions are chosen at multiple coordinate centers so that fewer modes are needed to give convergent results. The speed advantage of SAMM over other computational methods allows for the detailed study of ultra-wideband GPR sensing of challenging, realistic subsurface detection problems.  相似文献   

2.
This study attempts to quantify the ground penetrating radar rough ground surface clutter by numerical modeling of wave scattering, and establish a strategy to suppress the clutter for given test signals. The goal is to improve the GPR detection statistics for small, buried, low-contrast nonmetallic antipersonnel mines. Using a model of an experimentally measured impulse GPR signal, we simulate the ground surface and buried low-contrast mine target scattered responses. We employ a 2D finite difference time domain (FDTD) method to analyze the pulse shape, delay, and amplitude characteristics of the scattered waves—with and without buried nonmetallic mine targets—as a function of roughness parameters. Five hundred Monte Carlo simulations of various test cases of specified ground root mean square height and correlation length were run to generate statistics for the clutter and target signal variations. In addition, the effectiveness of identifying and removing the ground surface clutter signal for detecting subsurface targets is presented. Results indicate that even with moderate roughness, statistics can be generated to enhance the detection of small, shallow, low-contrast targets.  相似文献   

3.
Ground Penetrating Radar (GPR) signatures of shallowly buried landmines are normally obscured by a strong background signal comprised of the reflections from the ground surface and the antenna crosstalk. Based on the notion that buried landmine produces an anomaly in the soil dielectric an automated procedure has been developed which detects soil dieletric anomalies of the size comparable to the size of landmine in GPR data and enhances the signatures of such anomalies. A local background estimate is computed and a soil dielectric anomaly is detected at the spatial position where a change from the estimated background signal occurs. A translation invariant wavelet packet decomposition is applied for detection. The computation takes place in a running window which allows for the algorithm to adapt to the variations in ground conditions and antenna height. The technique was tested using a number of minelike targets buried in several different soil environments and the testing results are presented.  相似文献   

4.
Scanning near‐field optical microscopy is a technique in which the resolution is primarily determined by the size of a probe and not by the wavelength of illumination as in classical (far‐field) microscopy. However, the relationship between a sample and its near‐field optical image is usually rather complex. Typical factors responsible, at least partially, for such a complexity are the conditions of illumination and detection, sample characteristics (e.g. roughness and dielectric constant) and optical properties of the probe. Theoretical and experimental works conducted to improve our understanding of the relation between the object and the image have been reported ( Greffet & Carminati, 1997 ). Recently, with the help of a photon scanning tunnelling microscope we have carried out an extensive study of the resultant near‐field intensity distributions due to the elastic (in the plane) scattering of surface plasmon polaritons (SPPs) at metal film surfaces. We have also directly observed (in similar experimental conditions) localized dipolar excitations in silver colloid fractals ( Bozhevolnyi et al., 1998 ). In both cases, the studied phenomena are intimately related to the regime of multiple light scattering, in which the interference effects are rather complicated and therefore a proper interpretation of them was far from being trivial. Thus, even though a certain understanding of many features inherent to the subwavelength light interference phenomena was gained ( Bozhevolnyi & Coello, 1998 ; Bozhevolnyi et al., 1998 ; Coello & Bozhevolnyi, 1999 ), it is clear from the outcome of the investigations that more systematic studies in this context are still needed. A different and more powerful approach may be a statistical study of the recorded near‐field intensity distributions. In this work, we report what we believe to be the first results on experimental statistics of near‐field optical images exhibiting localized optical excitations (related to the regime of multiple scattering of light). We investigated optical images obtained with SPPs excited at different light wavelengths and scattered at different film surfaces, and with different polarizations and wavelengths of light scattered by silver colloid fractal structures. We have found significant differences in statistics between near‐field intensity distributions taken at rough and smooth metal film surfaces and fractal structures. Finally, our predictions seem to be in agreement with theoretical studies reported by other authors ( Sanchez‐Gil & Garcia‐Ramos, 1998 ).  相似文献   

5.
In real life most ground surfaces are not flat but rough. The observation of surface roughness depends on the wavelength and angle of the incident wave. In order to be able to detect shallow subsurface objects, on one hand we need to use higher frequencies to achieve better range resolution. One the other hand we have to deal with rough surfaces relative to shorter wavelengths. In this paper a wideband ground-penetrating radar (GPR) phase measurement and processing technique for characterizing three-dimensional (3-D) rough dielectric surfaces is presented. The method is based on the measurement of phase data by a standoff GPR with wide-beam antennas at short range over 3-D rough ground surfaces. The principle of this method was verified experimentally in the measurement of a composite surface. The height of the composite surface varies from 0 to 8 cm. The antennas are open-ended waveguide antennas whose frequency range is 2.3 GHz to 4.3 GHz. They are broadband, have low gain and wide beamwidth. The experimental tests demonstrate that the 3-D rough surfaces can be characterized locally by using a monochromatic and multifrequency broadband phase processing and imaging method. The results show good agreement between the imagery of the surface height distribution obtained by this method and the actual geometry of the 3-D rough surfaces.  相似文献   

6.
In this work we present a novel adaptive ground clutter removal (AGCR) algorithm for ground penetrating radar (GPR) applications. The reduction or even removal of the disturbing ground clutter, which mostly obscures the wanted reflections of buried targets, is very important especially for the detection of shallowly buried anti-personnel mines (APMs). Most of the ground clutter removal algorithms used nowadays, show weak performances in the case of a rough ground surface or suffer from high computation complexity. This algorithm is not designed to detect flush buried APMs. Further work is needed to ensure that the algorithm can detect all APM mines from flush buried to the maximum depth of cover of 13 cm as required by the UN SOPs. The algorithm presented in this contribution is capable to remove the ground clutter resulting from undulated surfaces by estimating not only the position but also the varying signal shape. This technique enables a near optimal ground clutter reduction with a moderate computation complexity. Furthermore, the proposed AGCR algorithm preserves the characteristic impulse responses of the buried objects, which affords a following target classification based on these significant reflections. The performance improvements of the proposed AGCR algorithm compared to standard algorithms are shown on measured data. The GPR data were collected with a laboratory test set-up which is also described briefly in this work.  相似文献   

7.
Extended Mie theory is used to investigate the scattering and extinction of evanescent waves by small spherical particles and aggregates of such particles. Metallic, dielectric and metal-coated dielectric particles are taken into consideration. In contrast to plane-wave excitation, p- and s-polarized spectra differ in the case of evanescent waves due to the inherent asymmetry of both polarizations. Furthermore, contributions from higher multipoles are strongly enhanced, compared with plane-wave excitation, and the enhancement factors are polarization dependent. The corresponding changes in the scattering and extinction spectra are most pronounced in cases where higher multipoles exhibit resonances in the spectral range considered. This applies, for example, to morphological resonances of dielectric particles with size parameters > 1. The effect of the surface, where the evanescent wave is generated by total internal reflection, on the scattering and extinction spectra is investigated via numerical field calculations employing the multiple multipole method. In an application to apertureless near-field optical microscopy, the variation of the scattered power is calculated when a silicon particle is scanned across a silver particle in the evanescent field.  相似文献   

8.
Extended Mie theory is used to investigate the scattering and extinction of evanescent waves by small spherical particles and aggregates of such particles. Metallic, dielectric and metal-coated dielectric particles are taken into consideration. In contrast to plane-wave excitation, p - and s -polarized spectra differ in the case of evanescent waves due to the inherent asymmetry of both polarizations. Furthermore, contributions from higher multipoles are strongly enhanced, compared with plane-wave excitation, and the enhancement factors are polarization dependent. The corresponding changes in the scattering and extinction spectra are most pronounced in cases where higher multipoles exhibit resonances in the spectral range considered. This applies, for example, to morphological resonances of dielectric particles with size parameters > 1. The effect of the surface, where the evanescent wave is generated by total internal reflection, on the scattering and extinction spectra is investigated via numerical field calculations employing the multiple multipole method. In an application to apertureless near-field optical microscopy, the variation of the scattered power is calculated when a silicon particle is scanned across a silver particle in the evanescent field.  相似文献   

9.
As precision engineering surfaces are gaining in importance in industry, so are the surface quality requirements. These surfaces have rms roughness typically ranging from some nanometers up to a few micrometers. Although numerous techniques exist for rough surface characterization, from traditional line-scanning stylus profilometers to modern three-dimensional (3-D) measurement instruments, there is a need for a fast, area-covering technique. An efficient method for the characterization of smooth surfaces is elastic light scattering. At visible wavelengths, the limits on roughness range and spatial frequency range make the method unsuitable for characterizing engineering surfaces. By increasing the wavelength of the incident light from the visible to the infrared, elastic light scattering turns out to be applicable for engineering surfaces. We have used total integrated scattering at 10.6 μm wavelength to measure rms roughness up to two micrometers. In this paper, the instrument design and properties are reviewed. We also present results from measurements on ground steel surfaces. Excellent correspondence with mechanical stylus measurements exists for surfaces with rms roughness in the range from 0.1–1.7 μm. The technique shows potential for rapid quality inspection of engineering surfaces.  相似文献   

10.
利用土壤源热泵试验系统,进行不同埋管间距下夏季连续运行试验,用FLUENT软件建立竖直U型地埋管换热器与土壤间的传热模型,对不同管间距的U型地埋管周围土壤温度场和地埋管换热器传热特性进行了数值模拟,将数值模拟结果与试验数据进行对比分析。通过分析,得到了不同埋管间距对土壤源热泵系统性能的影响大小,以及地埋管周围土壤温度场的变化对地埋管换热器换热性能影响规律,验证了所建立的模型和所用模拟条件的正确性。  相似文献   

11.
In this paper, we propose to extend the Microwave Enhanced Infrared Thermography (MEIT) method for landmine detection using two excitation microwave frequencies. We present the results of a detailed modeling effort. The extended method has the potential for detecting buried objects under rough surfaces at depths greater than with the original single frequency concept. Our result shows that the two-frequency technique minimizes the clutter introduced by an irregular surface, and can lead to better detection of buried objects. A 2-D computational model of this method has been developed to simulate real-world landmine detection. Receiver Operating Characteristic (ROC) curves were generated to evaluate the performance of this new method. Finally we demonstrate improvements achieved in detection depth under rough surfaces, compared to the single-frequency MEIT technology. The theoretical results obtained so far are presently being used to plan laboratory and field experiments for validation of our assumptions.  相似文献   

12.
工程实际中,由于摩擦力的存在,接触副的运动将导致接触区内产生大量的摩擦热,使接触副温度升高;由此产生的瞬时高温会使接触副更易发生弹塑性变形、引起表层下裂纹的萌生及扩展,甚至使接触副表面发生化学变化。建立了不同滑动速度下干接触体的滑动接触模型,利用快速傅立叶变换,通过求解拉普拉斯热传导方程,获得光滑及粗糙表面接触副的瞬时温升以及接触体内部各离散点的温度分布,即半无限体干接触的温度场。结果表明,相同载荷及摩擦因数条件下,相对滑动速度对接触体的温升及其温度分布有重要影响;粗糙峰表面接触处的瞬时温升远高于光滑表面接触处的瞬时温升。  相似文献   

13.
基于材料弹塑性变形理论,采用激光测量仪测取零件表面微观形貌数据,使用小波对测量数据进行处理,提取不同层次的粗糙度,利用有限元分析软件ANSYS及其APDL工具,建立真实粗糙表面不同尺度上的微观接触参数化有限元模型,仿真分析了粗糙表面接触的弹塑性变形全过程。提出了基于ANSYS重启动分析、网格重划的多载荷步求解算法,以解决有限元微观接触分析过程中的网格畸变问题。通过通用后处理模块/POST1,提取了有限元分析结果文件中的真实接触面积、接触载荷、接触微凸体个数等接触参数,分析了多种不同粗糙度表面相互接触时接触参数的关系,以及不同尺度的粗糙面对接触参数的影响,为研究结合面的接触机理和连接性能提供了方法。  相似文献   

14.
This paper presents the design of a novel Ground-Penetrating Radar (GPR) test site that has been integrated into the mini-city demonstrator Sense-City located at University Paris-Est (France). This test site provides several sources of measurement interest expressed by the presence of a multilayered soil with significant dielectric contrasts, and various dielectric pipes and blades buried at various depths in trenches filled with a backfill soil different from the natural soil. This paper presents experimental Bscans associated with the pipe zone acquired by three different GPR systems at frequencies ranging from 300 MHz to 1.5 GHz. The interpretation and comparison of the raw Bscans have allowed to characterize the dielectric properties of the soil layers, and to detect the hyperbola signatures of the buried pipes. The results of this study will help to guide future developments on polarization, operating frequency and signal processing to extract parameters (orientation, dielectric characteristics, position and size) associated with pipes.  相似文献   

15.
Cast blanks with large-scale free form surfaces are very difficult to manufacture because of significant casting distortions. It is concerned that the development and application of a hogging algorithm for preparing the blanks for an extended rough cutting. The procedure includes three main phases. They are the reconstruction of the free form surface with scattered points based on a special Hermite's interpolation, intersection of curved surfaces to define the hogging areas, and the tool path planning. The result shows that the algorithm is greatly valid in reducing the invalid tool paths so that the work efficiency can be improved remarkably.  相似文献   

16.
A scanning plasmon near-field microscope with gold and silver tips, operating in tapping mode of atomic force microscope is used to measure the distribution of the near-field intensity of surface plasmons on rough silver surfaces. Using the fast Fourier transformation of near-field images, it is shown that the distribution of the near-field intensity on the surface is the result of the interference between scattering plasmons and the initial plasmon beam. Multiple scattering effects such as backscattering enhancement of surface plasmons are also observed. It is shown that a nonuniformity in the registration of the scattered light leads to some artifacts in near-field images. Several registration modes of the light signal are considered and it is shown that recording the light signal at the second harmonic of the tapping frequency one can pick out the signal associated with an electromagnetic (em) resonance in a tip-surface (sphere-plane) structure. Possible implementations of this em resonance for studies of local permittivities and local nonlinear susceptibilities of intermediate media between the tip and surface with a subtip resolution are discussed.  相似文献   

17.
Techniques for broadside coupling to long-range surface plasmon waves propagating along metal stripes are investigated. The baseline technique consists of evanescently coupling an optical input beam originating from a polarization maintaining fiber to the plasmon wave via a right-angle prism positioned above the metal stripe, and providing an optical output some distance away through a mirror arrangement of identical elements. The technique is modeled theoretically using plane waves and implemented to measure the attenuation of the long-range plasmon wave propagating along a metal stripe supported by a thin freestanding dielectric membrane. An alternative technique for providing an output is proposed, whereby a tipless atomic force microscope probe physically contacts the metal stripe to generate out-of-plane scattering and a multimode fiber positioned nearby is used to capture a portion of the scattered light. This technique is easier to implement than the baseline technique, resulting in attenuation measurements of significantly better quality. The goodness of fit of the best fitting linear models to the measurements was significantly improved using this technique (0.93 and 0.99), and the measured attenuations were in very good agreement with the theoretical ones (6.01% and 0.27% error). This simple technique for optical probing and coupling could be applied to other surface plasmon waveguides and possibly to dielectric waveguides with modes having sufficient field strength in their evanescent tail. Output scattering using micron-sized particles located on the metal stripe was also investigated. The stability of the experimental setup was assessed and found to be about 0.01 dB peak to peak over a few minutes at constant temperature using a reference optical signal.  相似文献   

18.
The measurement of roughness on machined surfaces is of great importance for manufacturing industries as the roughness of a surface has a considerable influence on its quality and function of products. In this paper, an experimental approach for surface roughness measurement based on the coherent speckle scattering pattern caused by a laser beam on the machined surfaces (grinding and milling) is presented. Speckle is the random pattern of bright and dark regions that is observed when a surface is illuminated with a highly or partially coherent light beam. When the illuminating beam is reflected from a surface, the optical path difference between various wavelets with different wavelength would result in interference showing up as a granular pattern of intensity termed as speckle. The properties of this speckle pattern are used for estimation/quantification of roughness parameters. For measurement of surface roughness, initially the speckle patterns formed are filtered in the spatial frequency domain. The optical technique, namely spectral speckle correlation (autocorrelation) is utilized in this work for the measurement of roughness on machined surfaces. It has been observed that the pattern formed is dependent on the roughness of the illuminated surface. For example, a rough surface (milled) shows a small central bright region with a rapid decrease in intensity towards the edges, while a smooth surface (ground) shows a large central bright region with gradually decreasing intensity towards the edges. The complete methodology and analysis for quantification/estimation of surface finish of milled and ground surfaces based on speckle images that could be implemented in practice, is presented in this paper.  相似文献   

19.
This paper focuses on the mild steel (MS) corrosion detection and intercomparison of results obtained by gamma scattering, gammatography, and radiography techniques. The gamma scattering non-destructive evaluation (NDE) method utilizes scattered gamma radiation for the detection of corrosion, and the scattering experimental setup is an indigenously designed automated personal computer (PC) controlled scanning system consisting of computerized numerical control (CNC) controlled six-axis source detector system and four-axis job positioning system. The system has been successfully used to quantify the magnitude of corrosion and the thickness profile of a MS plate with nonuniform corrosion, and the results are correlated with those obtained from the conventional gammatography and radiography imaging measurements. A simple and straightforward reconstruction algorithm to reconstruct the densities of the objects under investigation and an unambiguous interpretation of the signal as a function of material density at any point of the thick object being inspected is described. In this simple and straightforward method the density of the target need not be known and only the knowledge of the target material's mass attenuation coefficients (composition) for the incident and scattered energies is enough to reconstruct the density of the each voxel of the specimen being studied. The Monte Carlo (MC) numerical simulation of the phenomena is done using the Monte Carlo N-Particle Transport Code (MCNP) and the quantitative estimates of the values of signal-to-noise ratio for different percentages of MS corrosion derived from these simulations are presented and the spectra are compared with the experimental data. The gammatography experiments are carried out using the same PC controlled scanning system in a narrow beam, good geometry setup, and the thickness loss is estimated from the measured transmitted intensity. Radiography of the MS plates is carried out using 160 kV x-ray machine. The digitized radiographs with a resolution of 50 μm are processed for the detection of corrosion damage in five different locations. The thickness losses due to the corrosion of the MS plate obtained by gamma scattering method are compared with those values obtained by gammatography and radiography techniques. The percentage thickness loss estimated at different positions of the corroded MS plate varies from 17.78 to 27.0, from 18.9 to 24.28, and from 18.9 to 24.28 by gamma scattering, gammatography, and radiography techniques, respectively. Overall, these results are consistent and in line with each other.  相似文献   

20.
In this paper, an experimental model for the rapid measurement of surface roughness (Rrms) in CNC face-milling specimens using the laser speckle method and digital image processing is established. The specimens used in this study were made of 6061-aluminum alloys through the high-speed face-milling process. In order to evaluate the effect of machining conditions, such as the feed rate, the spindle speed, the depth of cut, and the material of the cutting tool on the roughness of the specimens, the Taguchi method was used to determine the optimal parameters for machining. The laser radiation results in the speckle structure formed in the space when coherent light is scattered through an optically rough surface. The features of the speckles depend on the characteristics of the rough surfaces. Hence, the experimental work for the roughness measurement is based on the speckle effect. The experimental setup in this study consisted of a He-Ne laser, a ground glass, a CCD camera, and a digital image processing system developed using the Virtual Basic language. Computer evaluation of the speckle images revealed the values of Rrms rapidly. This study proposed a precise and non-contact optical method for evaluating the surface roughness from 0.20 to 0.60 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号