首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptide vaccines against HIV-1 were prepared according to the cassette theory that we had proposed previously. An amino acid sequence of B subtype consensus of the HIV-1 V3 region was introduced into the MHC binding component with a supermotif for various MHC class II. The peptide vaccines induced T-cell responses in the DQ6 mice in which only DQ6 molecules were expressed as MHC class II. By contrast, an original V3 peptide including the consensus sequence was non-immunogenic in the DQ6 mice. Antibodies obtained from the DQ6 mice immunized with the peptide vaccines neutralized laboratory B subtype strains of HIV-1 in vitro. It may be anticipated that these peptide vaccines protect infection of HIV-1 in DQ6 positive individuals.  相似文献   

2.
A method is described for searching protein sequence databases using tandem mass spectra of tryptic peptides. The approach uses a de novo sequencing algorithm to derive a short list of possible sequence candidates which serve as query sequences in a subsequent homology-based database search routine. The sequencing algorithm employs a graph theory approach similar to previously described sequencing programs. In addition, amino acid composition, peptide sequence tags and incomplete or ambiguous Edman sequence data can be used to aid in the sequence determinations. Although sequencing of peptides from tandem mass spectra is possible, one of the frequently encountered difficulties is that several alternative sequences can be deduced from one spectrum. Most of the alternative sequences, however, are sufficiently similar for a homology-based sequence database search to be possible. Unfortunately, the available protein sequence database search algorithms (e.g. Blast or FASTA) require a single unambiguous sequence as input. Here we describe how the publicly available FASTA computer program was modified in order to search protein databases more effectively in spite of the ambiguities intrinsic in de novo peptide sequencing algorithms.  相似文献   

3.
4.
BACKGROUND: The binding of T-cell antigenic peptides to MHC molecules is a prerequisite for their immunogenicity. The ability to identify binding peptides based on the protein sequence is of great importance to the rational design of peptide vaccines. As the requirements for peptide binding cannot be fully explained by the peptide sequence per se, structural considerations should be taken into account and are expected to improve predictive algorithms. The first step in such an algorithm requires accurate and fast modeling of the peptide structure in the MHC-binding groove. RESULTS: We have used 23 solved peptide-MHC class I complexes as a source of structural information in the development of a modeling algorithm. The peptide backbones and MHC structures were used as the templates for prediction. Sidechain conformations were built based on a rotamer library, using the 'dead end elimination' approach. A simple energy function selects the favorable combination of rotamers for a given sequence. It further selects the correct backbone structure from a limited library. The influence of different parameters on the prediction quality was assessed. With a specific rotamer library that incorporates information from the peptide sidechains in the solved complexes, the algorithm correctly identifies 85% (92%) of all (buried) sidechains and selects the correct backbones. Under cross-validation, 70% (78%) of all (buried) residues are correctly predicted and most of all backbones. The interaction between peptide sidechains has a negligible effect on the prediction quality. CONCLUSIONS: The structure of the peptide sidechains follows from the interactions with the MHC and the peptide backbone, as the prediction is hardly influenced by sidechain interactions. The proposed methodology was able to select the correct backbone from a limited set. The impairment in performance under cross-validation suggests that, currently, the specific rotamer library is not satisfactorily representative. The predictions might improve with an increase in the data.  相似文献   

5.
The Aq major histocompatibility complex (MHC) class II molecule is associated with susceptibility to murine collagen-induced arthritis (CIA), whereas the closely related H-2Ap molecule is not. To understand the molecular basis for this difference, we have analyzed the ability of H-2Aq and H-2Ap molecules (referred to as Aq and Ap) to bind and present collagen type II (CII)-derived glycosylated and non-glycosylated peptides. T cell clones specific for the immunodominant CII 256-270 peptide and restricted to both Aq and Ap molecules were identified. When these clones were incubated with CII protein and either Aq- or Ap-expressing antigen-presenting cells (APC), only Aq-expressing APC were able to induce stimulation. With the use of A(beta) transgenic mice this could be shown to be solely dependent on the MHC class II molecule itself and to be independent of other MHC- or non-MHC genes. Peptide binding studies were performed using affinity-purified MHC class II molecules. The CII 256-270 peptide bound with lower affinity to the Ap molecule than to the Aq molecule. Using a set of alanine-substituted CII 256-270 peptides, MHC class II and T cell receptor (TCR) contacts were identified. Mainly the side chains of isoleucine 260 and phenylalanine 263 were used for binding both the Aq and Ap molecule, i.e. the peptide was orientated similarly in the binding clefts. The major TCR contact amino acids were lysine 264, which can be posttranslationally modified, and glutamic acid 266, which is the only amino acid in the heterologous peptide which differs from the mouse sequence. Glycosylation at positions 264 and 270 of the CII 256-270 peptide did not change the anchor positions used for binding to the Aq or Ap molecules. The autologous form of the peptide (with aspartic acid at position 266) bound with lower affinity to the Aq molecule as compared with the heterologous peptide. The variable affinity displayed by the immunodominant CII 256-270 peptide for different MHC class II molecules, the identification of MHC and TCR contacts and the significance of glycosylation of these have important implications for the understanding of the molecular basis for inherited MHC class II-associated susceptibility to CIA and in turn, for development of novel treatment strategies in this disease.  相似文献   

6.
Viral proteins are not naturally selected for high affinity major histocompatibility complex (MHC) binding sequences; indeed, if there is any selection, it is likely to be negative in nature. Thus, one should be able to increase viral peptide binding to MHC in the rational design of synthetic peptide vaccines. The T1 helper peptide from the HIV-1 envelope protein was made more immunogenic for inducing T cell proliferation to the native sequence by replacing a residue that exerts an adverse influence on peptide binding to an MHC class II molecule. Mice immunized with vaccine constructs combining the more potent Th helper (Th) epitope with a cytotoxic T lymphocyte (CTL) determinant developed greatly enhanced CTL responses. Use of class II MHC-congenic mice confirmed that the enhancement of CTL response was due to class II-restricted help. Thus, enhanced T cell help is key for optimal induction of CTL, and, by modification of the native immunogen to increase binding to MHC, it is possible to develop second generation vaccine constructs that enhance both Th cell activation and CTL induction.  相似文献   

7.
Eight to eleven amino acid residues are the sizes of predominant peptides found to be associated with MHC class I molecules. Proteasomes have been implicated in antigen processing and generation of such peptides. Advanced methodologies in peptide elution together with sequence determination have led to the characterisation of MHC class I binding motifs. More recently, screening of random peptide phage display libraries and synthetic combinatorial peptide libraries have also been successfully used. This has led to the development and use of predictive algorithms to screen antigens for potential CTL epitopes. Not all predicted epitopes will be generated in vivo and the emerging picture suggests differential presentation of predicted CTL epitopes ranging from cryptic to immunodominant. The scope of this review is to discuss antigen processing by proteasomes, and to put forward a hypothesis that the molecular basis of immunogenicity can be a function of proteasomal processing. This may explain how pathogens and tumours are able to escape immunosurveillance by altering sequences required by proteasomes for epitope generation.  相似文献   

8.
Under most circumstances, cell surface MHC class I molecules display peptides derived from a cytosolic pool of proteins. The efficient presentation of such peptides requires the functioning of two MHC gene products [TAP1 and TAP2 (transporter-associated with Ag processing 1 and 2)] that form a complex that facilitates transmembrane movement of peptides from the cytosol to the endoplasmic reticulum, the site of peptide association with class I molecules. It has been previously shown that peptides can be presented in a TAP-independent manner in association with HLA A2.1 or H-2 Kd if they are expressed COOH-terminal to an endoplasmic reticulum insertion/signal sequence derived from the adenovirus E3/19K glycoprotein (Anderson et al., 1991. J. Exp. Med. 174: 489; Eisenlohr et al., 1992. Cell 71: 963). We show that: 1) the E3/19K signal sequence greatly enhances the presentation of each of four additional peptides tested in association with H-2 Kb or Kk, 2) the E3/19K signal sequence can be substituted by a signal sequence derived from beta-IFN, and 3) the E3/19K signal sequence does not function when located at the COOH terminus of antigenic peptides. These findings indicate that first, many peptides require TAP for efficient presentation to T cells, second, expression of peptides COOH-terminal to signal sequences is a generally applicable method of bypassing the TAP-dependence of peptide presentation and third, the leader sequence does not act to bypass TAP simply by increasing the hydrophobic nature of peptides.  相似文献   

9.
The potential therapeutic use of peptides to activate or anergize specific T cells is seriously limited by their susceptibility to proteolytic degradation. Classically, peptides are stabilized by incorporation of non-natural modifications including main chain modifications. In the case of MHC II-restricted peptides, the peptide backbone actively participates to the interaction with the MHC molecule and hence may preclude the peptidomimetic approach. We thus investigated whether a single amide bond modification influenced the peptide capacity to bind to a MHC II molecule and to stimulate specific T cells. Twenty pseudopeptide analogs of the I-Ed binder 24-36 peptide, whose sequence was derived from a snake neurotoxin, were obtained by replacing each amide bond of the peptide central part, by either a reduced psi[CH2-NH] or N-methylated psi[CO-NMe] peptide bond. In agreement with the major interacting role played by the peptide backbone, several peptides displayed a low, if any, capacity to bind to the MHC II molecule and did not lead to T cell stimulation. However, one-third of the peptides were almost as active as the 24-36 peptide in I-Ed binding assays and one-fifth in T cell stimulation assays. Among them, two pseudopeptides displayed native-like activity. Good binders were not necessarily good at stimulating T cells, demonstrating that main chain modification also affected T cell recognition. We thus showed that a peptidomimetic approach could create a new type of MHC II ligand to control T cell responses.  相似文献   

10.
Molecules encoded by the major histocompatibility complex (MHC) are polymorphic integral membrane proteins adapted to the presentation of peptide fragments of foreign antigens to antigen-specific T-cells. The diversity of infectious agents to which an immune response must be mounted poses a unique problem for receptor-ligand interactions; how can proteins whose polymorphism is necessarily limited bind an array of peptides almost infinite in its complexity? Both MHC class I and class II determinants have achieved this goal by harnessing a limited number of peptide side chains to anchor the epitope in place while exploiting conserved features of peptide structure, independent of their primary sequence. While class I molecules interact predominantly with the N- and C-termini of peptides, class II determinants form an extensive hydrogen bonding network along the length of the peptide backbone. Such a strategy ensures high-affinity binding, while selectively exposing the unique features of each ligand for recognition by the T-cell receptor.  相似文献   

11.
Immunization of mice with gp96/grp94 heat shock proteins (HSPs) elicits tumor-specific cellular immunity to the tumors from which gp96 is isolated. However, the cDNA sequence of gp96 is identical among tumors and normal tissues. This raises the question regarding the structural basis of the specific immunogenicity of gp96. As HSPs bind a wide array of molecules including peptides, we have proposed that gp96 may not be immunogenic per se, but may chaperone antigenic peptides. Furthermore, gp96 is localized predominantly in the lumen of the endoplasmic reticulum (ER) suggesting that it may act as a peptide acceptor and as accessory to peptide loading of MHC class I molecules. We demonstrate here that gp96 molecules contain ATP-binding cassettes, bind ATP and possess an Mg(2+)-dependent ATPase activity. Gp96 preparations are also observed to contain tightly bound peptides, which can be eluted by acid extraction. These properties of gp96 are consistent with its proposed roles in chaperoning antigenic peptides and in facilitating MHC class I--peptide assembly in the ER lumen. We present a model to explain how interaction of gp96 with MHC class I may result in transfer of peptides to the latter.  相似文献   

12.
The precise mechanisms of failure of immunological tolerance to self proteins are not known. Major histocompatibility complex (MHC) susceptibility alleles, the target peptides, and T cells with anti-self reactivity must be present to cause autoimmune diseases. Experimental autoimmune encephalomyelitis (EAE) is a murine model of a human autoimmune disease, multiple sclerosis. In EAE, residues 1-11 of myelin basic protein (MBP) are the dominant disease-inducing determinants in PL/J and (PL/J x SJL/J)F1 mice. Here we report that a six-residue peptide (five of them native) of MBP can induce EAE. Using peptide analogues of the MBP-(1-11) peptide, we demonstrate that only four native MBP residues are required to stimulate MBP-specific T cells. Therefore, this study demonstrates lower minimum structural requirements for effective antigen presentation by MHC class II molecules. Many viral and bacterial proteins share short runs of amino acid similarity with host self proteins, a phenomenon known as molecular mimicry. Since a six-residue peptide can sensitize MBP-specific T cells to cause EAE, these results define a minimum sequence identity for molecular mimicry in autoimmunity.  相似文献   

13.
The potential of matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay (PSD) time-of-flight mass spectrometry for the characterization of peptides and proteins is discussed. Recent instrumental developments provide for levels of sensitivity and accuracy that make these techniques major analytical tools for proteome analysis. New software developments employing protein database searches have greatly enhanced the fields of application of MALDI-PSD. Peptides and proteins can be easily identified even if only a partial sequence information is determined. Derivatization procedures have been optimized for MALDI-PSD to increase the structural information and to obtain a complete peptide sequence even in critical cases. They are fast, simple and can be performed on target. MALDI-PSD is also a very powerful tool to characterize or elucidate post-translational or chemically induced modifications. In association with database searches, proteins issued from electrophoretic gels can be identified after specific enzymatic cleavages and peptide mapping.  相似文献   

14.
The synthetic random amino acid copolymer Copolymer 1 (Cop 1, Copaxone, glatiramer acetate) suppresses experimental autoimmune encephalomyelitis, slows the progression of disability, and reduces relapse rate in multiple sclerosis (MS). Cop 1 binds to various class II major histocompatibility complex (MHC) molecules and inhibits the T cell responses to several myelin antigens. In this study we attempted to find out whether, in addition to MHC blocking, Cop 1, which is immunologically cross-reactive with myelin basic protein (MBP), inhibits the response to this autoantigen by T cell receptor (TCR) antagonism. Two experimental systems, "prepulse assay" and "split APC assay," were used to discriminate between competition for MHC molecules and TCR antagonism. The results in both systems using T cell lines/clones from mouse and human origin indicated that Cop 1 is a TCR antagonist of the 82-100 epitope of MBP. In contrast to the broad specificity of the MHC blocking induced by Cop 1, its TCR antagonistic activity was restricted to the 82-100 determinant of MBP and could not be demonstrated for proteolipid protein peptide or even for other MBP epitopes. Yet, it was shown for all the MBP 82-100-specific T cell lines/clones tested that were derived from mice as well as from an MS patient. The ability of Cop 1 to act as altered peptide and induce TCR antagonistic effect on the MBP p82-100 immunodominant determinant response elucidates further the mechanism of Cop 1 therapeutic activity in experimental autoimmune encephalomyelitis and MS.  相似文献   

15.
In order to characterize peptide binding motifs of MHC class II molecules HLA-DR3, we have sequenced pool or single peptides eluted from the binding groove. Anchor residues identified are in agreement with peptide binding and sequencing studies reported by different groups. Four positions seem to be dominant (i, i + 3, i + 5, i + 8) while 2 secondary positions (i + 1, i + 2) could cooperate to facilitate binding. According to all the criteria define here and the literature, we propose an anchor motif specific for DR3, which has been tested on the sequence of an antigen from Schistosoma mansoni. Three out of 6 putative epitopes identified share common sequences with immunodominant regions determined in humans and by experimental immunizations in animal models. Extended to other alleles, this approach could be suitable to define potentially immunodominant peptides useful for vaccines.  相似文献   

16.
The aim of the current study was to determine whether immunization with synthetic peptides corresponding to the joining region segment of p210 bcr-abl chimeric protein can elicit CD8+ cytotoxic T lymphocytes (CTLs) capable of specifically lysing leukemia cells. BALB/c mice were immunized with peptides identical to the joining region segment of p210 bcr-abl protein. Class I major histocompatibility complex (MHC)-restricted bcr-abl peptide-specific CD8+ CTLs were elicited. The CTL clones were H-2 Kd restricted and specifically recognized a nonamer peptide of the combined sequence of bcr-abl amino acids but neither bcr nor abl amino acid sequence alone. Despite specificity and substantial lytic potential against syngeneic cell line incubated with exogenously supplied peptides, the bcr-abl peptide-specific CTLs failed to lyse syngeneic murine leukemia cells expressing human p210 bcr-abl protein containing the same bcr-abl joining region peptide sequence. Similarly, the bcr-abl peptide-specific CTLs did not lyse human bcr-abl-positive chronic myelogenous leukemia cells expressing murine class I MHC antigen (i.e., K562 cells infected with vaccinia virus expressing H-2 Kd). The appropriateness of the joining region segment of bcr-abl protein to serve as a T cell target depends upon whether that segment is presented by class I MHC in a concentration high enough to stimulate CTLs. The current experiments using murine peptide-specific CTLs could not establish that the joining region of bcr-abl protein is processed and presented by class I MHC antigen-processing pathway, but the possibility was not ruled out. Alternative models and/or strategies are necessary.  相似文献   

17.
Cells from the bone marrow can present peptides that are derived from tumors, transplants, and self-tissues. Here we describe how dendritic cells (DCs) process phagocytosed cell fragments onto major histocompatibility complex (MHC) class II products with unusual efficacy. This was monitored with the Y-Ae monoclonal antibody that is specific for complexes of I-Ab MHC class II presenting a peptide derived from I-Ealpha. When immature DCs from I-Ab mice were cultured for 5-20 h with activated I-E+ B blasts, either necrotic or apoptotic, the DCs produced the epitope recognized by the Y-Ae monoclonal antibody and stimulated T cells reactive with the same MHC-peptide complex. Antigen transfer was also observed with human cells, where human histocompatibility leukocyte antigen (HLA)-DRalpha includes the same peptide sequence as mouse I-Ealpha. Antigen transfer was preceded by uptake of B cell fragments into MHC class II-rich compartments. Quantitation of the amount of I-E protein in the B cell fragments revealed that phagocytosed I-E was 1-10 thousand times more efficient in generating MHC-peptide complexes than preprocessed I-E peptide. When we injected different I-E- bearing cells into C57BL/6 mice to look for a similar phenomenon in vivo, we found that short-lived migrating DCs could be processed by most of the recipient DCs in the lymph node. The consequence of antigen transfer from migratory DCs to lymph node DCs is not yet known, but we suggest that in the steady state, i.e., in the absence of stimuli for DC maturation, this transfer leads to peripheral tolerance of the T cell repertoire to self.  相似文献   

18.
We have studied the interactions which occur between the peptide ligand and beta2-microglobulin (beta2m) components of the class I MHC complex by analysing the process of beta2m exchange. We have previously shown that the rate of beta2m exchange on a cell-surface class I MHC complex varies with the peptide ligand to which it is bound. It remains unclear, however, whether the ability of peptide ligand to alter beta2m/heavy-chain association is related to peptide affinity, peptide structure, or both. In this article, we examine the effects of variations in peptide ligand structure on the rate of beta2m exchange by cell surface Kb complexes. Using a panel of alanine substituted variants of the MCMV peptide (YPHFMPTNL), we show that single amino acid changes in peptide sequence can have dramatic effects on the rates of beta2m exchange. The observed changes in beta2m exchange rates are directly due to modification of the peptide ligand structure as they do not reflect changes in peptide affinity. These findings suggest that peptide ligand structure can induce conformational changes in the Kb heavy chain which alter the rates of cell surface beta2m exchange, and provide further evidence for peptide-dependent fluidity of the class I heavy chain.  相似文献   

19.
20.
To study how the T cell receptor interacts with its cognate ligand, the MHC/peptide complex, we used site directed mutagenesis to generate single point mutants that alter amino acids in the CDR3beta loop of a H-2Kb restricted TCR (N30.7) specific for an immunodominant peptide N52-N59 (VSV8) derived from the vesicular stomatitis virus nucleocapsid. The effect of each mutation on antigen recognition was analyzed using wild type H-2Kb and VSV8 peptide, as well as H-2Kb and VSV8 variants carrying single replacements at residues known to be exposed to the TCR. These analyses revealed that point mutations at some positions in the CDR3beta loop abrogated recognition entirely, while mutations at other CDR3beta positions caused an altered pattern of antigen recognition over a broad area on the MHC/peptide surface. This area included the N-terminus of the peptide, as well as residues of the MHC alpha1 and alpha2 helices flanking this region. Assuming that the N30 TCR docks on the MHC/peptide with an orientation similar to that recently observed in two different TCR-MHC/peptide crystal structures, our findings would suggest that single amino acid alterations within CDR3beta can affect the interaction of the TCR with an MHC surface region distal from the predicted CDR3beta-Kb/VSV8 interface. Such unique recognition capabilities are generated with minimal alterations in the CDR3 loops of the TCR. These observations suggest the hypothesis that extensive changes in the recognition pattern due to small perturbations in the CDR3 structure appears to be a structural strategy for generating a highly diversified TCR repertoire with specificity for a wide variety of antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号