首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

2.
α - Al2O3 nanopowders with mean particle sizes of 10, 15, 48, and 80 nm synthesized by the doped α-Al2O3 seed polyacrylamide gel method were used to sinter bulk Al2O3 nanoceramics. The relative density of the Al2O3 nanoceramics increases with increasing compaction pressure on the green compacts and decreasing mean particle size of the starting α-Al2O3 nanopowders. The densification and fast grain growth of the Al2O3 nanoceramics occur in different temperature ranges. The Al2O3 nanoceramics with an average grain size of 70 nm and a relative density of 95% were obtained by a two-step sintering method. The densification and the suppression of the grain growth are achieved by exploiting the difference in kinetics between grain-boundary diffusion and grain-boundary migration. The densification was realized by the slower grain-boundary diffusion without promoting grain growth in second-step sintering.  相似文献   

3.
α-Al2O3 platelet powders were synthesized in molten Na2SO4 flux. The size of α-Al2O3 platelets was significantly reduced when partially decomposed rather than pure Al2(SO4)3 was used as the source of Al2O3; a further reduction in the platelet size was realized through additional seeding with nanosized α-Al2O3 seeds. The addition of microsized α-Al2O3 platelet seeds significantly influenced the platelet morphology of the final powder, as well. The platelet size of the final powder was in direct proportion to the size of the platelet seeds, and was in reverse proportion to the cube root of the platelet seed content.  相似文献   

4.
This paper involves novel fabrication processes for polycrystalline α-Al2O3-matrix composite fibers that contain nanosized yttrium aluminum garnet (YAG) particles. Dense α-Al2O3/YAG nanocomposite fibers with a fine and homogeneous microstructure can be successfully fabricated via a modified sol-gel process and α-Al2O3 seed-particle addition. YAG nanoparticles have been homogeneously dispersed within Al2O3-matrix grains as well as at grain boundaries. Effects of α-Al2O3 seed particles and YAG nanodispersions on crystallization and microstructure development of nanocomposite fibers are discussed.  相似文献   

5.
Gradient, porous alumina ceramics were prepared with the characteristics of microsized tabular α-Al2O3 grains grown on a surface with a fine interlocking feature. The samples were formed by spin-coating diphasic aluminosilicate sol on porous alumina substrates. The sol consisted of nano-sized pseudo-boehmite (AlOOH) and hydrolyzed tetraethyl orthosilicate [Si(OC2H5)4]. After drying and sintering at 1150°–1450°C, the crystallographic and chemical properties of the porous structures were investigated by analytical electron microscopy. The results show that the formation of tabular α-Al2O3 grains is controlled by the dissolution of fine Al2O3 in the diphasic material at the interface. The nucleation and growth of tabular α-Al2O3 grains proceeds heterogeneously at the Al2O3/glass interface by ripening nano-sized Al2O3 particles.  相似文献   

6.
The effect of Cr and Fe in solid solution in γ-Al2O3 on its rate of conversion to α-Al2O3 at 1100°C was studied by X-ray diffraction. The δ form of Al2O3 was the principal intermediate phase produced from both pure γ-Al2O3 and that containing Fe3+ in solid solution, although addition of Fe greatly reduced crystallinity. Reflectance spectra and magnetic susceptibilities showed that Cr exists as Cr6+ in γ-Al2O3 and as Cr3+ in α-Al2O3, with θ-Al2O3 as the intermediate phase. The intermediates formed rapidly, and the rates of their conversion to α-Al2O3 were increased by 2 and 5 wt% additions of Fe and decreased by 2 and 4 wt% additions of Cr. An approximately linear relation observed between α-Al2O3 formation and decrease in specific surface area was only slightly affected by the added ions. This relation can be explained by a mechanism in which the sintering of δ- or θ-Al2O3, within the aggregates of their crystallites, is closely coupled with conversion of cubic to hexagonal close packing of O2- ions by synchro-shear.  相似文献   

7.
A novel method for the preparation of Al2O3–TiN nanocomposites was developed. A mixture of TiO2, AlN, and Ti powder was used as the starting material to synthesize the Al2O3–TiN nanocomposite under 60 MPa at 1400°C for 6 min using spark plasma sintering. X-ray diffractometry, scanning electron microscopy, and transmission electron microscopy were used for detailed microstructural analysis. Dense (up to 99%) nanostructured Al2O3–TiN composites were successfully fabricated, the average grain size being less than 400 nm. The fracture toughness ( K I C ) and bending strength (σb) of the nanostructured Al2O3–TiN composites reached 4.22±0.20 MPa·m1/2 and 746±28 MPa, respectively.  相似文献   

8.
Thermal reactions in 93% Al2O3-7% MgO and 95.8% Al2O3-4.2% MgO gels seeded with α-Al2O3, MgAl2O4, α-Fe2O3, and SiO2, sols were investigated by differential thermal analysis to determine the extent of nucleation catalysis of solid-state reactions. Seeding with α-Al2O3 lowered the α-Al2O3 crystallization temperature in these xerogels by 100° to 150°C. Spinel seeds have much less effect on the γ-α transition, and α-Fe2O3 and SiO2 seeds do not affect it significantly. Isostructural seeding of gels may therefore permit lower ceramic processing temperatures.  相似文献   

9.
A technique for growing α-Al2O3 crystals is described in which Na2O·11Al2O3 is dissolved in a liquid of composition Na2O·4TiO2·3Al2O3. Alpha Al2O3 is precipitated as Na2O evaporates from the system; Na2O·11Al2O3 serves as a source of Al2O3, and Na2O in the liquid. The content of solids in the mixture is always such that it does not melt completely. The size of the α-Al2O3 crystals grown is related to the Na2O content of the composition. Crystals as large as 4000 by 3000 μm in the α-axis direction and 500 μm in the c -axis direction have been grown.  相似文献   

10.
Aqueous solutions of zirconium acetate and aluminum nitrate were spray pyrolyzed at 250°C and upquenched to different temperatures to yield metastable solid solutions of composition Zr(1− x )AlxO(2− x /2). An amorphous oxide forms first during pyrolysis which subsequently crystallizes as a single phase for x ≤ 0.57 (≤40 mol% Al2O3). The crystallization temperature increased with Al2O3 content. Electron diffraction, supported by Raman spectroscopy, indicates that the initial phase is tetragonal. At higher temperatures, the initial solid solation partitions to other metastable phases, viz., t -ZrO2+γ-Al2O3, prior to achieving their equilibrium phase assemblage, m -ZrO2+α-Al2O3. Partitioning yields a nanocomposite microstructure with grain sizes of 20–100 nm, compared to the 3 to 5 nm in the initial, single phase. Compositions containing 45 to 50 mol% Al2O3 concurrently crystallize and partition. The structure selected during crystallization and the partitioning phenomena are discussed in terms of diffusional constraints during crystallization, which are conceptually similar to those operating during rapid solidification.  相似文献   

11.
The combined effect of rapid sintering by spark-plasma-sintering (SPS) technique and mechanical milling of γ-Al2O3 nanopowder via high-energy ball milling (HEBM) on the microstructural development and mechanical properties of nanocrystalline alumina matrix composites toughened by 20 vol% silicon carbide whiskers was investigated. SiCw/γ-Al2O3 nanopowders processed by HEBM can be successfully consolidated to full density by SPS at a temperature as low as 1125°C and still retain a near-nanocrystalline matrix grain size (∼118 nm). However, to densify the same nanopowder mixture to full density without the benefit of HEBM procedure, the required temperature for sintering was higher than 1200°C, where one encountered excessive grain growth. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that HEBM did not lead to the transformation of γ-Al2O3 to α-Al2O3 of the starting powder but rather induced possible residual stress that enhances the densification at lower temperatures. The SiCw/HEBMγ-Al2O3 nanocomposite with grain size of 118 nm has attractive mechanical properties, i.e., Vickers hardness of 26.1 GPa and fracture toughness of 6.2 MPa·m1/2.  相似文献   

12.
The growth of α-Al2O3 from a planar specimen of thermally grown γ-alumina on a molybdenum transmission electron microscope grid was studied. The α-Al2O3 grows into the transition alumina matrix and then thickens via a ledge growth mechanism. Faceted Mo crystallites cause pinning of α-Al2O3 ledges and are larger on α-Al2O3 than on the transition alumina matrix.  相似文献   

13.
The study examines the effect which the composition of hot-pressed electroconductive ceramics has on their structure, mechanical properties, and oxidation behavior, for ceramics of the type AIN–Al2O3–42 wt% TiN, differing in the AIN/Al2O3 ratio. The results are physico-mechanical property data, including density, hardness, strength, fracture toughness, and wear resistance. A correlation was found between the wear resistance and fracture toughness. The analysis of oxidation products revealed the formation of α-Al2O3 and rutile in the temperature range from 600° to 1100°C and aluminum titanate above 1200°C. The spallation of the oxide layer caused low oxidation resistance of Al2O3-rich composites above 1250°C. The oxidation of composites was compared with the oxidation of pure TiN. The relationship is discussed between material properties, composition, phases, and processing parameters.  相似文献   

14.
The rate of ZnA12O4 formation for binary powder mixtures of ZnO and α-Al2O3 (dense coarse particles and weak agglomerates of fine powder) fired in air or O2 atmospheres was measured and the microstructures of those systems were observed by scanning electron microscopy. With dispersed dense particles of α-Al2O3, the Al2O3 surfaces were covered with ZnO and the spinel grew into the particles maintaining essentially a constant reaction interface area. Calculations based on geometric measurements and use of Jander's equation gave a similar high activation energy, 354 kJ/mol, which corresponds to the activation energy of volume diffusion of Zn2+ in ZnAl2O4. An oxygen atmosphere had no effect. With a matrix of fine α-Al2O3 powder and dispersed granules of ZnO, a higher reaction rate occurred because of an increase in reaction interface area due to penetration of the powder compact matrix by ZnO vapor, which was enhanced by an O2 atmosphere. The reaction layer grew into the alumina matrix adjoining the ZnO granules with a parabolic rate law. Apparent activation energies below ∼200 kJ/mol were calculated.  相似文献   

15.
High-pressure sintering of nanocrystalline γ-A12O3 has been studied over a temperature range of 923-1323 K and at a pressure of 1 GPa. The γ-Al2O3 to α-Al2O3 transformation temperature changed from 1473 K without pressure to ∼1023 K at 1 GPa. Full density was obtained at 1273 and 1323 K in 10 min. The microhardness value of fully dense α-alumina with a grain size of 142 nm was found to be 25.3 ± 0.8 GPa. The Hall-Petch slope for the very fine grain size range is different from that of the coarse-grained alumina.  相似文献   

16.
Transmission electron microscopy (at 100 and 1000 kV potential) and analytical scanning transmission electron microscopy were used to study α-Al203 second-phase particles and their interactions with grain boundaries in two high-conductivity Y203/Yb203 stabilized zirconia ceramics containing deliberate additions of the alumina as a sintering aid. Most of the Al203 particles were intragranular and microanalysis showed that they contained inclusions rich in Zr or Si plus Zr. Al2O3 particles at grain boundaries were frequently associated with amorphous cusp areas rich in Si and Al. The results suggest that the Al203 acts as a scavenger for SiO2, removing it from grain-boundary localities. A model is proposed whereby this process occurs as the boundaries meet the second-phase particles, assisted by rapid grain-boundary diffusion. Such an ZrO2-Al2O3-SiO2 interaction and partitioning is predicted thermodynamically and offers a possible explanation for the improvements in ionic conductivity brought about by Al2O3 additions, as reported in the literature.  相似文献   

17.
The effect of monovalent cation addition on the γ-Al2O3-to-α-Al2O3 phase transition was investigated by differential thermal analysis, powder X-ray diffractometry, and specific-surface-area measurements. The cations Li+, Na+, Ag+, K+, Rb+, and Cs+ were added by an impregnation method, using the appropriate nitrate solution. β-Al2O3 was the crystalline aluminate phase that formed by reaction between these additives and Al2O3 in the vicinity of the γ-to-α-Al2O3 transition temperature, with the exception of Li+. The transition temperature increased as the ionic radii of the additive increased. The change in specific surface area of these samples after heat treatment showed a trend similar to that of the phase-transition temperature. Thus, Cs+ was concluded to be the most effective of the present monovalent additives for enhancing the thermal stability of γ-Al2O3. Because the order of the phase-transition temperature coincided with that of the formation temperature of β-Al2O3 in these samples, suppression of ionic diffusion in γ-Al2O3 by the amorphous phase containing the added cations must have played an important role in retarding the transition to α-Al2O3. Larger cations suppressed the diffusion reaction more effectively.  相似文献   

18.
Aluminum nitride (AlN) powders were synthesized by gas reduction–nitridation of γ-Al2O3 using NH3 and C3H8 as the reactant gases. AlN was identified in the products synthesized at 1100°–1400°C for 120 min in the NH3–C3H8 gas flow confirming that AlN can be formed by the gas reduction–nitridation of γ-Al2O3. The products synthesized at 1100°C for 120 min contained unreacted γ-Al2O3. The 27A1 MAS NMR spectra show that Al–N bonding in the product increases with increasing reaction temperature, the tetrahedral AlO4 resonance decreasing prior to the disappearance of the octahedral AlO6 resonance. This suggests that the tetrahedral AlO4 sites of the γ-Al2O3 are preferentially nitrided than the AlO6 sites. AlN nanoparticles were directly formed from γ-Al2O3 at low temperature because of this preferred nitridation of AlO4 sites in the reactant. AlN nanoparticles are formed by gas reduction–nitridation of γ-Al2O3 not only because the reaction temperature is sufficiently low to restrict grain growth, but also because γ-Al2O3 contains both AlO4 and AlO6 sites, by contrast with α-Al2O3 which contains only AlO6.  相似文献   

19.
The interfacial reaction between Y2O3-partially-stabilized ZrO2 and α-Al2O3 was studied. It was noted that α-Al2O3 forms inside the periphery of the β-Al2O3 grains; its formation suggests the loss of Na2O from the p-Al2O3, either by evaporation or by dissolution in the ZrO2 matrix. The presence of Na2ZrO3 is suspected.  相似文献   

20.
After high-temperature reaction between Al2O3 and TiO2 crystals, precipitates found in rutile were characterized by electron microprobe and X-ray diffraction methods and by optical and electron microscopy. The precipitates were identified as α-Al2O4. Geometric and crystallographic orientation relations with the TiO2 matrix constitute a reverse case of rutile precipitation in star sapphire .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号