共查询到16条相似文献,搜索用时 93 毫秒
1.
2.
3.
基于BP神经网络的故障诊断技术研究 总被引:4,自引:0,他引:4
分析了传统的故障诊断方法的特点和缺点,在此基础上选择BP神经网络应用于故障诊断,详细探讨了BP神经网络的建模方法,根据设备的层次结构和特点,将集成神经网络应用于故障诊断,有效地克服了单一神经网络故障诊断的一些缺点,大大提高了故障诊断的效率和准确率. 相似文献
4.
5.
针对网络故障诊断过程中故障规则难以提取的问题,提出一种基于改进BP神经网络的故障诊断方法。以网络故障信息为样本对BP网络进行训练,利用其强大的自适应能力和非线性映射能力,建立起网络故障信息与故障模式输出之间的映射。同时,为了避免BP网络的学习算法陷入局部极小值,提高故障诊断的效率和精确度,采用L-M优化算法来对网络进行训练。另外,采取初期终止的方法提高BP网络的泛化能力。实例表明,该方法有效提高了网络故障诊断的有效性。 相似文献
6.
7.
基于BP神经网络模型的电机故障诊断专家系统 总被引:13,自引:0,他引:13
针对传统机械设备故障诊断专家系统存在知识获取能力弱、求解有一定局限性等问题,介绍了BP神经网络旋转机械故障诊断专家系统,对单位BP算法,BP神经网络的建立、训练及应用作了具体说明。该系统学习效率高,故障诊断准确,已成功应用于铁路机车走行部的轮对电机在线故障诊断。 相似文献
8.
为了有效地利用卫星下传的海量遥测数据,在测试过程中对卫星进行实时的故障诊断,提出了一种基于BP神经网络的卫星故障诊断方法;该方法包括离线自主学习和实时在线故障诊断两部分;离线自主学习部分基于历史数据库和更新样本进行自主学习,学习获得神经网络模型存储于知识库;实时在线故障诊断部分依据相应的神经网络模型,对遥测数据进行实时在线的诊断;为了验证基于BP神经网络的卫星故障诊断方法的有效性和优越性,以现有型号三轴稳定近地卫星控制分系统为实验对象,利用该方法对具有代表性的红外地球敏感器和动量轮的相关遥测数据进行分析;通过将该方法的实验结果与基于Kalman滤波的方法的实验结果进行对比分析,表明该方法能够有效地对卫星的故障进行诊断。 相似文献
9.
故障检测和诊断技术对提高系统可靠性具有重要意义,针对飞控系统中常见的传感器故障,提出了基于神经网络观测器的故障诊断方法;通过构造神经网络模型代替解析系统建模,利用神经网络的学习能力在线检测传感器故障,最后,应用BP神经网络算法对故障进行仿真;仿真结果表明,神经网络观测器方法对单一传感器故障及多个传感器故障均能够准确识别,并对故障的定位也有不错的效果。 相似文献
10.
11.
滚动轴承是旋转机械中最常用的部件之一。滚动轴承很容易损坏,而它的工作条件通常比较复杂,很难对其故障进行准确判断。为了提高滚动轴承故障诊断的有效性,构建了一种新的基于改进量子蜂群算法和BP神经网络的滚动轴承故障诊断模型(IQABC-BP)。首先针对量子蜂群算法在种群初始化和进化过程中存在的问题,提出了一种改进量子蜂群算法,然后利用改进量子蜂群算法对BP神经网络的初始权值、阈值和隐含层单元数进行优化,建立了一种具有超并行超高速的基于改进量子蜂群算法的BP神经网络模型,并应用于滚动轴承的故障诊断中。实验结果表明,IQABC-BP模型收敛速度更快,故障诊断效果更好,具有很好的应用价值。 相似文献
12.
13.
为了快速准确诊断出无线电罗盘多故障模块,针对诊断过程中的过拟合现象提出了基于提前停止法的学习率可变BP算法,并运用多级BP神经网络诊断思想,得出基于多级BP神经网络的多故障诊断方法;文中根据多级BP神经网络的多故障诊断方法,对具体的机载无线电罗盘测向电路建模仿真,将复杂的无线电罗盘电路分解为3个子网络,并对每个子网络建立合适的故障集,按顺序依次诊断得出无线电罗盘电路中的故障模块;此方法可快速准确定位电路中的多处故障模块,准确率较高且缩短了诊断时间. 相似文献
14.
基于BP神经网络的智能BIT故障诊断系统研究 总被引:2,自引:0,他引:2
论述了智能BIT的设计、检测、诊断、决策四个方面的主要研究内容,分析了BP神经网络的网络模型及工作原理,构建了基于BP神经网络的智能BIT故障诊断系统,并用某雷达录取终端的故障实际数据进行了验证。结果表明将神经网络与智能BIT结合是一种有效的诊断方法,解决了传统BIT故障诊断能力不足,导致系统虚警率过高、自适应性能差等问题,使被测系统具有更高的故障诊断能力。 相似文献
15.
为了实现滚动轴承故障的快速检测,提出了一种基于神经网络和轴承振动信号时域指标的滚动轴承故障检测方法。采用振动信号的偏态、峭度、峰值和裕度作为BP神经网络的输入,用BP算法对网络进行了训练。实验结果表明,利用该方法可以有效实现滚动轴承故障的快速检测。 相似文献